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Requiring a Reference Standard

Tingting Hu,* * Berkman Sahiner,? Shuyue Guan,? Mike Mikailov,* Kenny Cha,* Frank
Samuelson,® Nicholas Petrick®

8U.S. Food and Drug Administration, Silver Spring, Maryland, United States

Abstract

Purpose: Al-based medical imaging devices often include lesion or organ segmentation capabilities. EXisting
methods for segmentation performance evaluation compare Al results to an aggregated reference standard using
accuracy metrics like the Dice coefficient or Hausdorff Distance. However, these approaches are limited for lacking
a gold standard and challenges in defining meaningful success criteria. To address this, we developed a statistical
method to assess agreement between an Al device and multiple human experts without requiring a reference
standard.

Approach: We propose a paired-testing method evaluating whether an Al device's segmentation performance
significantly differs from multiple human experts’. The method compares device-to-expert dissimilarity with expert-
to-expert dissimilarity, avoiding the need for a reference standard. We validated the method through: (1) statistical
simulations where Dice coefficient performance is either shared (“overlap agreeable™) or not shared ("overlap
disagreeable™) between the device and experts; (2) image-based simulations using 2D contours with shared or non-
shared transformation parameters (“transformation agreeable or disagreeable”). We also applied the method to
compare an Al segmentation algorithm to four radiologists using data from the Lung Image Database Consortium.

Results: Statistical simulations show the method controls type | error (~0.05) for overlap-agreeable and type Il error
(~0) for overlap-disagreeable scenarios. Image-based simulations show acceptable performance with mean type |
error 0.07 (SD 0.03) for transformation-agreeable and mean type Il error 0.07 (SD 0.18) for transformation-
disagreeable cases.

Conclusions: The paired-testing method offers a new tool for assessing the agreement between an Al segmentation
device and multiple human expert panelists without requiring a reference standard.

Keywords: segmentation assessment, multi-expert human panel, paired testing
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1 Introduction

The segmentation of structures and lesions within medical images is an increasing focus of
artificial intelligence (Al) based medical imaging devices. Examples include devices used for
delineating lesions in disease detection and diagnosis, or for outlining organs in surgical planning
or radiation therapy. The evaluation of segmentation algorithm performance is critical in the
medical device domain to ensure patient safety and benefit, however, there is a relatively small
amount of literature addressing the evaluation of segmentation algorithm performance even
though there is a significant amount of research focused on Al segmentation development.
Furthermore, existing literature on segmentation performance assessment primarily focuses on
reviewing and comparing performance evaluation metrics (e.g., %) or proposing new evaluation
measures (e.g., > *). However, these proposed metrics and measures cannot be directly used for
evaluating segmentation performance in the absence of a reference standard establishing the
ground truth for segmentation task assessment. In many medical imaging tasks in the literature,
reference contours for each object to be segmented are often defined by multiple human experts
(‘expert’ may be referred to in the literature or submissions by various terms, such as observer,
reader, reviewer, or truther). While using only one expert's reference contour to evaluate device
performance simplifies the analysis, this approach fails to reflect the truth variability that exists
even among high-level experts. Therefore, including multiple experts' reference contours better
reflects the true nature of the problem, though this introduces complexity in evaluation and
analysis. This complexity necessitates robust statistical methods to appropriately handle
comparison of device segmentation against multi-expert references.

A commonly used assessment approach in practice is, with a reference standard contour

defined, the Al segmentation output is then compared, through an overlap metric, e.g., Dice >,
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Jaccard ®, or a distance-based metric, e.g., Hausdorff distance ! with the reference. A limitation
of this approach is it requires prespecifying a meaningful cutoff for each metric. However,
selecting and justifying a clinically meaningful performance criterion can be difficult.

These two challenges with current segmentation assessment methods — the absence of a
definitive reference standard contour and the difficulty of establishing a clinically meaningful
performance goal — led us to explore a new statistical method that assesses interchangeability,
without requiring a reference standard, between an Al segmentation and segmentations from a
human expert panel. With the growing number of AI/ML segmentation devices, seeking for a
more generalizable segmentation assessment approach has become a pressing need in the
medical technology field.

The only relevant work we found is by Zou et al.”, which addresses a similar problem of
evaluating a segmentation algorithm against multiple truthers (Example 2 in their paper).
However, their method aggregates the three human annotations into a single STAPLE-based
reference, then compares the algorithm to this composite. This would still require defining an
arbitrary success cutoff and leave the fundamental challenges unresolved. To address this gap,
we examined methodologies for assessing continuous estimation tasks (i.e., estimation tasks for
which the target quantity has a continuous value, such as area or volume measurements for
organs or lesions), where agreement measures and methods have been more widely discussed.

These include the Bland-Altman method 2, individual bioequivalence °, the individual

equivalence index '°, ', the agreement index 2, and the individual equivalence coefficient and
coefficient of individual agreement *.

To address segmentation agreement, we adapted the interchangeability method proposed by

Obuchowski et al. ** for numerical estimation to the segmentation context. The basic idea is to
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condense reader-reader pairwise segmentation comparisons into a within-panel agreement score
for each image and, likewise, generate a corresponding device-panel agreement score. This
reformulates the segmentation comparison as a paired numerical score comparison. By tailoring
Obuchowski et al.'s method, we constructed a paired test statistic and apply the resulting
confidence interval to determine whether device-panel agreement significantly differs from
within-panel agreement.

In the remainder of the paper, we define the problem mathematically and present the
proposed methodology. We next present two simulation studies: one statistic-based and the other
image-based, and report the Type | and Type Il errors for our proposed method. Finally, we

conclude with a discussion of the findings and potential directions for future research.

2 Methodology

This section outlines the problem definition and proposed methodology. For illustration
simplicity, we focus on a single object to segment throughout this article. But the proposed

method can be applied to multi-object scenarios in a similar way as defined here.

2.1 Problem Formulation

Consider a testing dataset containing n images, where each image is obtained from an
independent patient and contains a single object to segment. On this dataset, an Al device,
denoted as D, segments the object of interest within each image. Concurrently, a human expert
panel denoted as P, comprised of k experts, each independently performs manual annotation of
the object. Each segmentation, whether by the device or an expert, is represented as a binary

image.
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The problem of interest is testing whether the segmentation performance of device D
significantly diverges from that of the human expert panel. Symbolically, the aim is to test
whether pp - Mp significantly differs from zero, where pp represents the mean (dis)similarity
score between the device and panel across images, and pp denotes the mean (dis)similarity score
between experts within the panel across images, i.e., testing the null hypothesis

Ho: Up - Hp =0,
against the alternative hypothesis

Ha: pp - pp # 0.
Here, we adopt an equality-based null hypothesis formulation for simplicity, following the
fashion of hypothesis formulation in the FDA guidance ** where the null hypothesis is set as no
treatment effect on the selected endpoint. This choice ensures alignment with the conventional
definitions of Type | and Type Il errors, which will be utilized for method validation later in

Section 3.

2.2 Related Work for Numeric Output

11
l.

Obuchowski et a proposed a metric called individual equivalence index to measure the

individual equivalence of imaging tests when the health outcome of interest is a numeric

variable. This metric is defined as below:
2 2
¥ = EYrie = Yirie)” — E(Yirik — Yirir') (1)
where Yjr; denotes the result or measurement by the new test modality (T) by reader i for
subject j on occasion k, and Yg;, denotes the result or measurement by the existing reference

modality (R) by reader i for subject j on occasion k.
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While the Obuchowski et al. ** method was developed for an estimation task with a numeric

output, we adapt it to quantify segmentation agreement through suitable modifications.
2.3 Proposed Method

2.3.1 Segmentation Interchangeability Metric

From Eq. (1), it is evident that the central concept behind the interchangeability metric is to
compare the dissimilarity between the new test and reference test with the dissimilarity within
the reference test. Building on this idea, a natural extension of this approach to segmentation
outputs is replacing the dissimilarity metric for numeric outputs adopted by Obuchowski et al. **
(i.e., the mean squared difference) with an appropriate segmentation dissimilarity metric. One of
the most widely used similarity measures for segmentation is the Dice Similarity Coefficient
(DSC) °. We therefore use 1-DSC as the dissimilarity surrogate to tailor the original individual
equivalence index to segmentation. Based on this modification, we propose a segmentation
interchangeability metric denoted by J, to evaluate segmentation agreement between an Al
device and a panel of human readers. The proposed metric is defined as follows:

6 = E{1 — DSC(device,reader panel)} — E{1 — DSC (within reader panel)} 2)
where E denotes the expected value. Clearly, the closer § is to zero, the more similar the device's
segmentation performance is to the human reader panel. The Dice coefficient for paired
segmentations on a single image is always positive and ranges between zero and one. These
properties make this segmentation interchangeability metric (8) well-suited for evaluating

segmentation performance at the individual image level.
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2.3.2 Point Estimate

The point estimator for the proposed interchangeability metric (2) can be easily derived as

below.

a 1 . 1 1 . 2 .
It can also alternatively be expressed as:

§=—3" 2, 8i() =X, TE {1 - DSCr(D] — 5 Xy [1 - DSC(D]} - (4)

[ES]
From the formulae (3) and (4), we can see §;(j) is defined as the mean difference between

device and the i" individual reader on j™ image, 8(j) is the mean &;(j) across all readers for j"

image, and & is the mean of §(j) across all images.

2.3.3 Confidence Interval

Various approaches can be used to construct confidence intervals (Cls) for §. In this study,

we used both a parametric and non-parametric method to construct Cls. The parametric method

estimates the z-interval, given by 8 +Z,,, S, where S = \/ﬁZ}?(S(j) — 8)2 is the sample

standard deviation of §(j), and the non-parametric method is a bootstrap approach that follows
the procedure outlined in **.

A CI covering zero indicates that no significant difference in overlap-based segmentation
performance between device and panel. Note, this should not be interpreted as the two are the
same but only that a difference could not be established statistically **. A ClI entirely below zero
indicates device-panel segmentation agreement is statistically higher than the within-panel
agreement, while a Cl above zero indicates the device-panel agreement is significantly lower

than the within-panel agreement.
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3 Simulation Studies

This section presents the design and results from our simulation studies conducted as part of the

method validation process.
3.1 Overall Study Design

3.1.1 Study Overview

In this article, we undertake two primary types of simulation studies to validate our proposed
method. Simulation Study 1 is a statistics-based simulation study, which simulates Dice scores
from a  predefined  statistical  distribution.  This  approach  defines  the
‘agreement/interchangeability’ between readers and devices by controlling the Dice distribution
characteristics for each. This simulation allows for the assessment of our segmentation
interchangeability metric across a range of Dice distributions. A limitation of the Simulation
Study 1 design is it may not perfectly capture relationships inherent in image-generated Dice
scores. The relationship here refers to the correlations between pairwise Dice scores coming
from segmentations of the same objects from different annotators. Simulating Dice scores simply
by sampling from a statistical distribution may not fully capture these relationships.

To address this limitation, we conducted Simulation Study 2 where we directly compute Dice
scores from contour masks rather than simulating Dice scores directly. To achieve this, we
employed the Medical Image Segmentation Synthesis (MISS) Tool, developed by Guan et al. **
to synthesize multiple segmentation masks. The MISS Tool has a set of adjustable parameters
simulating six types of segmentation errors. Using the MISS Tool, we generate Dice scores by
applying the following process: (1) simulate a set of truth contours, (2) generate reader and

device annotation variations using the MISS tool based on the true contours, and (3) calculate the
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Dice scores from the simulated contours. Study 2 establishes ‘agreement/interchangeability’
between readers and devices by either using the same or different transformation parameters
within the MISS Tool. To distinguish between the two simulation studies, we refer to
(dis)agreement in Study 1 as “overlap (dis)agreeable” and in Study 2 as “transformation

(dis)agreeable”.

3.1.2 Performance Metrics

For Study 1, we evaluate the performance of the proposed method using three metrics:

1. Type | Error: The probability of incorrectly rejecting the null hypothesis (Hp) when it is
actually true.

2. Type Il Error: The probability of failing to reject the null hypothesis (Ho) when it is
actually false.

3. Coverage Probability (CP): The proportion of times a confidence interval contains the
true value of the parameter being estimated (in our case, the true value of 9).

A desirable method is expected to have type | error near 0.05 for agreeable cases, type Il
error below 0.2 for disagreeable cases assuming a statistical power of 0.80, and CP near the
confidence level (set as 0.95 in our study).

For Study 2 (image-based simulation), we assess performance using Type | and Type Il
errors. Coverage Probability (CP) is not applicable as the true value of 6 is unknown because the

mean Dice performance cannot be directly controlled or defined using the MISS tool.
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3.2 Study 1: Statistics-based Simulation

3.2.1 Parameter Configuration

In Simulation Study 1, the number of readers in the panel, denoted as k, are either 2 or 3 in our
experiments. We define the following global parameters for each simulation conduction:

e (uy, 0p): mean and standard deviation for any reader-reader pair DSC.

e (d,d;), whered, =up— o, dy = op — 0y, With up, and o, representing the mean and
standard deviation of DSC for any device-reader pair. d, and d, correspond to the
differences in the means and standard deviations for the device-reader DSC and the
reader-reader DSC.

e (po, po, Poo): pairwise reader-reader DSC correlation po, pairwise device-reader DSC
correlation pp, and the between device-reader and reader-reader DSC correlation ppo,
respectively.

To mirror real-world data variations, where within-panel and device-panel dissimilarities

may have different means and standard deviations, we explore four scenarios:

I.  equal mean, equal variance (Overlap Agreeable): up, = yy, op = 0y;

I1.  unequal mean, equal variance (Overlap Disagreeable): up # yo, op = 0y;
I11.  equal mean, unequal variance (Overlap Agreeable): up = Wy, op # 0p;
IV.  unequal mean, unequal variance (Overlap Disagreeable): up # yo, op # 0.

Parameter configurations for these scenarios are presented in Table 1.

Table 1: Parameter configuration scenarios for Study 1: statistic-based simulations.

Scenario Parameter configuration

I. equal p, equal Mo in {0.75, 0.8, 0.85, 0.9}

o (overlap (Ko, 00) oo in {0.025, 0.05, 0.1, 0.15}
agreeable): 32 (dy, ds) d,=0,d; =0

10
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settings total po= pp= poo IN {moderate, strong/very strong} (correlation

(Po: o, Poo) criteria is described above in Section 3.2.1)

Ho in {0.75, 0.8, 0.85, 0.9}

1. unequal y, (Ho, o) oo in {0.025, 0.05, 0.1, 0.15}

equal ¢ (overlap | (dy, d5) dy, in {-0.05, -0.1, -0.25, -0.5},d, =0
disagreeable): po in {moderate, strong/very strong}
512 settings total | (po, pp, pPoo) pp in {moderate, strong/very strong}

ppo In {weak, very weak}

I11. equal y, Mo in {0.75, 0.8, 0.85, 0.9}

unequal 6 (Ho, ©0) oo in {0.025, 0.05, 0.1}

(overlap Dice (d,, do) d, =0, dy in £0.02, 0.05, 0.1, 0.15}

agreeable): 96

settings total (po, po, poo) o= po= poo in {moderate, strong/very strong}
(Mo, o0) Mo in {0.8, 0.85, 0.9}

V. unequal p, ’ oo in {0.025, 0.05, 0.1}

unequal ¢ (d, do) d, in {-0.05, -0.1, -0.25},

(overlap H o d, in {0.02, 0.1, 0.2}

disagreeable): po in {moderate, strong/very strong}

648 settings total | (po, pp, Poo) pp in {moderate, strong/very strong}

ppo In {weak, very weak}

(mo, 60) values in Table 1 were determined based on the mean and standard deviation values
reported in the existing literature for human-observer-pair Dice scores in tasks such as CT-scan
lung nodule/tumor segmentation and liver tumor/brain hematomas segmentation (e.g., ***"). (dp,
do) values in Table 1 were defined based on our exploration of LIDC-based synthesized data. In
practice device performance is typically lower than human experts, thus dp is set to be non-
positive in our studies, and do is set to be non-negative across all settings. (po, po, Poo)
configurations in Table 1 are based on the following assumptions: 1) Dice scores drawn from
distributions with the same mean exhibit moderate or higher correlation, whereas Dice scores
drawn from distributions with different means demonstrate weak or lower correlation (criteria for
defining different correlation strength categories are described in Section 3.2.2); and 2) an equi-
correlation-category assumption is used to define correlation structure for between annotator-

pair-Dice (details see next section 3.2.2).

11
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3.2.2 Dataset Simulation

For each setting configured in Table 1, we simulated a total of Ng;,, = 1000 datasets. Each
dataset contained k readers. Thus there is a total of k*(k-1)/2 reader-pair DSCs and k device-
reader-pair DSCs for each of n images. Dice scores were generated using a multivariate Beta
distribution as follows:

Step 1. Compute the Beta shape parameters (ao, bo) and (ap, bp) corresponding to the pre-
specified mean and standard deviation of (U, o) and (Up, op) for the reader-reader Dice
distribution and the device-reader Dice distribution, respectively.

Step 2. Generate the correlation matrix for pairwise Dices based on the pre-specified
correlation strength categories (po, po. poo) using the following: Set the diagonal elements in the
correlation matrix to 1. The upper triangle in the matrix was defined by randomly generating
correlation coefficients between pairwise reader-reader DSCs (DSCj» vs. DSCyp, 1<i<i’<k,
15)<5°<k, 1<j) based on

(U(0,0.Z) if po = “veryweak”
U[0.2,0.4) if po = “weak”
Corr(DSCii’,DSCjj) ~ {U[0.4,0.6) if p, = “moderate”
lU[0.6,0.8) if pg = “strong”
U[0.8,1) if po = “very strong”

where U stands for the uniform distribution. The correlation categorization criteria here is taken
from the guidelines established by Evans 8, which are consistent with those used by LaMorte *°
and Swinscow and Campbell %. Correlation between pairwise device-reader DSCs (pp), and
between reader-reader DSCs and device-reader DSCs (ppo) were determined in a similar fashion.
The correlation matrix, denoted as £ and having dimensions k(k+1)/2 by k(k+1)/2, is symmetric;
therefore, the lower triangle can be filled by mirroring the upper triangle.

Step 3: Generate all annotator-pair DSCs via multivariate beta distribution as follows.

12
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(DSClz, ey DSCij—1)k; DSCpy, ...,DSCDk)~ MultiBeta{a, I; I}

where d@ = (agI*k~D%/2 apTk), b = (byI* k2 byT*) and T refers to an all-ones vector.
The beta shape parameters reflect the desired means and standard deviations from Step 1 and X
is the correlation matrix generated in Step 2. This step is implemented using modified code from
21.

The statistical simulation was run using a non-synchronized parallelization techniques to
efficiently scale the large-scale simulations on a High-Performance Computing (HPC) clusters,
and the Pierre L'Ecuyer's ?* 'RngStreams' function was used to generate multiple independent

pseudo-random number streams ensuring no overlap across array job tasks.

3.2.3 Results

Below are selected results from the statistics-based simulation study. Note that in the rest of
the article, n,.qqer aNd Nymqge are used interchangeably with k and n, respectively, for ease of
reference. Performance metrics are computed for each setting based on Ng;,,, =1000, 73,4, =400,
and ny.qqe-=2 and 3.

Figure 1 presents boxplots of the coverage probabilities (CP) and Type I/Il error results for
both 2 and 3 readers across all conditions for the four scenarios. Tables 2-5 provide detailed
results for the Type I/1l error and CP for the individual settings. The tables include results for
the 3-reader scenario and include bootstrap Cls for all 32 settings in Scenario | and selected
settings from Scenarios 11-1V. The 2-reader scenario and z-interval Cls are similar. The selected

settings from scenarios 1l and IV only include the d, = —0.05 setting as the type Il error would

only be smaller for larger absolute differences d, < —0.05.

13
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From Figure 1 and Tables 2-5, it is evident that the proposed method performs well.
Specifically, Type | error remains close to 0.05 across all settings for overlap-agreeable cases
(Scenarios | and I11), Type Il error approaches 0 in all settings for overlap-disagreeable cases

(Scenarios Il and 1V), and CP consistently hovers around 0.95 across all the scenarios.

1.000 0.100 0.100
0.975 = 0.075 = : 0.075
S s
a i} iy s
& 0.950 ~ 0.050 ~ 0.050 H
g g .
> >
= = .
0.925 O R ! ] 0.025 0.025 i s
il
0.900 0.000 0.000 A s ‘
| 1l 1l \% | ] 1l v
Scenario Scenario Scenario

n.reader B3 2 EF 3

Figure 1. CP, Type I error and Type Il error results for the statistics-based Simulation Study 1. The figure includes
boxplot results aggregated across all the settings in Scenarios | — IV, and for both the 2-reader and 3-

reader scenarios.

Table 2. Results for all 32 settings in Scenario I: Equal Mean u and Equal Standard Deviation o fromstatistics-based
simulation Study 1.

Ho O Po= Pp= PDO CP | Type I Error
0.75 | 0.025 moderate 0.937 0.063
0.8 | 0.025 moderate 0.955 0.045
0.85 | 0.025 moderate 0.947 0.053
0.9 | 0.025 moderate 0.943 0.057
0.75 | 0.05 moderate 0.949 0.051
0.8 | 0.05 moderate 0.93 0.07
0.85 | 0.05 moderate 0.951 0.049
0.9 | 0.05 moderate 0.939 0.061
0.75| 0.1 moderate 0.942 0.058
08 | 01 moderate 0.948 0.052
0.85| 0.1 moderate 0.949 0.051
09 | 01 moderate 0.953 0.047
0.75| 0.15 moderate 0.95 0.05
0.8 | 0.15 moderate 0.946 0.054

14
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Table 3.

Selected results for 8 Settings with (#0: d, 00) = (0.85,—0.05, 0.15) in Scenario Il: Unequal Mean u and

0.85| 0.15 moderate 0.962 0.038
09 | 0.15 moderate 0.948 0.052
0.75 | 0.025 | strong/very strong | 0.957 0.043
0.8 | 0.025 | strong/very strong | 0.961 0.039
0.85 | 0.025 | strong/very strong | 0.95 0.05
0.9 | 0.025 | strong/very strong | 0.936 0.064
0.75 | 0.05 | strong/very strong | 0.957 0.043
0.8 | 0.05 | strong/very strong | 0.942 0.058
0.85 | 0.05 | strong/very strong | 0.941 0.059
0.9 | 0.05 | strong/very strong | 0.935 0.065
0.75| 0.1 | strong/very strong | 0.948 0.052
0.8 | 0.1 | strong/very strong | 0.942 0.058
0.85| 0.1 | strong/very strong | 0.932 0.068
0.9 | 0.1 |strong/very strong | 0.948 0.052
0.75 | 0.15 | strong/very strong | 0.945 0.055
0.8 | 0.15 | strong/very strong | 0.941 0.059
0.85 | 0.15 | strong/very strong | 0.961 0.039
0.9 | 0.15 | strong/very strong | 0.95 0.05

Equal Standard Deviation o from statistics-based Simulation Study 1.

Uo | du g, | po PD PDo Type Il error CP
very
0.85 |-0.05 |0.15 | moderate moderate weak |0 0.955
0.85 |-0.05 |0.15 | moderate moderate weak |0 0.939
strong/very very
0.85 |-0.05 |0.15 | moderate strong weak | 0.002 0.94
strong/very
0.85 |-0.05 |0.15 | moderate strong weak |0 0.944
strong/very very
0.85 |-0.05 |0.15 | strong moderate weak |0 0.946
strong/very
0.85 |-0.05 |0.15 | strong moderate weak |0 0.94
strong/very strong/very very
0.85 |-0.05 |0.15 | strong strong weak | 0.001 0.942
strong/very strong/very
0.85 |-0.05 |0.15 | strong strong weak |0 0.941
Table 4. Selected results for 24 of 96 Settings with p, = 0.75 in Scenario I11: Equal Mean u and Unequal Standard

Deviation ¢ from statistics-based Simulation Study 1.
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Table 5. Selected results for 24 of 648 Settings with (#o, d,, 00) = (0.8,—0.05,0.1) in Scenario 1V: Unequal Mean

o 0y d, | Po= pPp= Poo Type | error | CP
0.75 ] 0.025 | 0.15 | strong or very strong 0.054 0.946
0.75] 0.1 |0.02 moderate 0.048 0.952
0.75] 0.05 | 0.02 moderate 0.058 0.942
0.75 ] 0.025 | 0.02 moderate 0.05 0.95
0.75] 0.1 |0.05 moderate 0.049 0.951
0.75| 0.05 | 0.05 moderate 0.054 0.946
0.75 ] 0.025 | 0.05 moderate 0.048 0.952
075 0.1 | 01 moderate 0.067 0.933
0.75] 0.05 | 01 moderate 0.056 0.944
0.75]0.025| 0.1 moderate 0.061 0.939
0.75] 0.1 |0.15 moderate 0.055 0.945
0.75| 0.05 | 0.15 moderate 0.058 0.942
0.75]0.025 | 0.15 moderate 0.054 0.946
0.75| 0.1 |0.02 | strong or very strong 0.066 0.934
0.75 | 0.05 | 0.02 | strong or very strong 0.048 0.952
0.75 | 0.025 | 0.02 | strong or very strong 0.052 0.948
0.75] 0.1 |0.05 | strong or very strong 0.051 0.949
0.75 | 0.05 | 0.05 | strong or very strong 0.05 0.95
0.75 ] 0.025 | 0.05 | strong or very strong 0.055 0.945
0.75| 0.1 | 0.1 | strong or very strong 0.042 0.958
0.75] 0.05 | 0.1 | strong or very strong 0.055 0.945
0.75 | 0.025 | 0.1 | strong or very strong 0.059 0.941
0.75] 0.1 |0.15 | strong or very strong 0.046 0.954
0.75 | 0.05 | 0.15 | strong or very strong 0.061 0.939

u and Unequal Standard Deviation ¢ from statistics-based Simulation Study 1.

o | G | g | dy | po Pp Poo Type Il error | CP
0.8 -0.05|0.1]|0.2 | moderate moderate very weak | 0.007 0.956
0.8 |-0.05|0.1]0.2 | moderate moderate weak 0.002 0.956
0.8 -0.05|0.1]|0.2 | moderate strong/very strong | very weak | 0.033 0.952
0.8 |-0.05|0.1]0.2 | moderate strong/very strong | weak 0.02 0.932
0.8 | -0.05| 0.1 | 0.2 | strong/very strong | moderate very weak | 0.009 0.952
0.8 | -0.05 | 0.1 | 0.2 | strong/very strong | moderate weak 0.003 0.947
0.8 | -0.05| 0.1 | 0.2 | strong/very strong | strong/very strong | very weak | 0.036 0.945
0.8 | -0.05 | 0.1 | 0.2 | strong/very strong | strong/very strong | weak 0.018 0.95
0.8 -0.05|0.1]|0.1 | moderate moderate very weak | 0 0.959
0.8 |-0.05|0.1]0.1 | moderate moderate weak 0 0.947
0.8 -0.05|0.1]|0.1 | moderate strong/very strong | very weak | 0 0.948
0.8 |-0.05|0.1]0.1 | moderate strong/very strong | weak 0 0.948
0.8]-0.05]0.1]0.1 | strong/very strong | moderate very weak | 0 0.937
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0.8]-0.05|0.1]|0.1 | strong/very strong | moderate weak 0 0.945
0.8 | -0.05 | 0.1 | 0.1 | strong/very strong | strong/very strong | very weak | 0.001 0.946
0.8-0.05|0.1]0.1 | strong/very strong | strong/very strong | weak 0 0.935
0.8 | -0.05 | 0.1 | 0.02 | moderate moderate very weak | 0 0.951
0.8 | -0.05 | 0.1 | 0.02 | moderate moderate weak 0 0.943
0.8 | -0.05 | 0.1 | 0.02 | moderate strong/very strong | very weak | 0 0.954
0.8 | -0.05 | 0.1 | 0.02 | moderate strong/very strong | weak 0 0.941
0.8 | -0.05 | 0.1 | 0.02 | strong/very strong | moderate very weak | 0 0.938
0.8 | -0.05 | 0.1 | 0.02 | strong/very strong | moderate weak 0 0.951
0.8 | -0.05 | 0.1 | 0.02 | strong/very strong | strong/very strong | very weak | 0 0.952
0.8 | -0.05 | 0.1 | 0.02 | strong/very strong | strong/very strong | weak 0 0.946

310

311 3.3 Simulation Study 2: Image-based Simulation Study

312  In Study 2, we directly compute Dice scores from contour masks rather than simulating Dice

313  scores from statistical distributions. To achieve this, we employed the Medical Image

314  Segmentation Synthesis (MISS) Tool, developed by Guan et al.™ to synthesize segmentation

315  masks with multiple controlled types of segmentation errors, such as spiculations and

316  shape/alignment changes.

317  MISS-Tool Overview

318  The MISS-tool emulates segmentation errors by modifying truth masks of anatomical objects

319 through a set of adjustable parameters that simulate six typical segmentation errors: boundary

320  spiculation, under/over-sizing, centroid location errors, overlap variations, shape/alignment

321  details, and the introduction of satellite structures. These segmentation error types are

322  implemented through four primary image processing methods:

323 1. Affine Transformation: Modifies segmentation contours through resizing (changing

324 height and width ratios), shifting (location changes in X, y coordinates), and rotation
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330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

(angle parameter).

2. Spiculation: Adjusts contours in polar coordinates by adding Gaussian functions to
create spike-like protrusions or indentations on boundaries, representing boundary

irregularities.

3. Fourier Descriptor (FD) Modification: Modifies contours in the spatial frequency
domain by keeping low-frequency components (basic shape) while allowing changes to
middle-frequency components and removing high-frequency components (fine details of

the shape).

4. Satellite Structure Synthesis: Adds separate small objects in nearby regions of the true
object, simulating disconnected components that are incorrectly included in segmentation

results.

For our simulation study, we employed three of the four image processing methods (affine
transformation, spiculation, and Fourier descriptor modification) to generate synthetic
segmentation variations that approximate potential segmentation difference between different

annotators.

3.3.1 Parameter Configuration

In Study 2, we consider cases containing synthetic contours with 3, 5, 7 and 9 readers. Contours
made by all annotators on the same image are provided as 2D binary images of identical
dimensions. We define the following parameters to control the synthetic contours used in Study

2 based on the MISS-tool methodology:
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Affine transformation parameters: Resizing ratios (Rx, Ry): control the width and
height scaling of the segmentation boundaries, where ratios equal to 1 mean no change.
Location shift (Sx, Sy): controls spatial displacement in x and y coordinates measured in
pixels. Rotation angle (¢): controls the rotational variation of the segmented contours.
Fourier transformation parameters: (as shown in the Supplementary Figure S1)
Detail: number of non-zero Fourier descriptors from low to high frequences that will be
kept or modified. This controls the level of boundary detail preservation, where higher
values retain more fine-grained boundary features. Range: number of Fourier descriptors
with middle frequency components to be modified. This determines the frequency
bandwidth of modifications applied to the contour. Magnitude: strength value
controlling how the middle-ranged Fourier descriptors are modified. This determines the
extent of shape changes applied through frequency domain manipulation.

Spiculation parameters: for adding Gaussian functions to create spike-like protrusions
in polar coordinates (as shown in the Supplementary Figure S2), the following
parameters are used: Center (c): angular position (in degrees, 0-360°) where
spiculation is added to the contour boundary. Height (h): magnitude of spike protrusion
or indentation, where positive values create convex spiculations and negative values
create concave indentations. Width (w): angular spread of the spiculation feature,

determining how broad the spike modification appears on the boundary.

We then explored two scenarios in Study 2:

I. device segmentation is Transformation Agreeable with the reader panel, and

I. device segmentation is Transformation Disagreeable with the reader panel.
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Each setting is characterized by the 11 parameters defined above. Four affine parameters

(Rx, Ry, Sx, Sy) are used as “tunable” parameters, which introduce variability across settings.

The remaining seven parameters (including all Fourier and spike transformation parameters) are

designated as “default” parameters, maintaining uniformity across all settings. Table 6 and

Appendix A.1 present the configurations for the tunable and default parameters for the two

scenarios being studied. This design allows us to approximate the range of DSC distributions

reported in the literature, as confirmed in results later.

Table 6. Configuration for tunable parameters in image-based Simulation Study 2.

scenario

parameters

configuration

I. reader panel
vs. device:
Transformation
Agreeable

(nimage' nreader)

Nimage in (100, 250, 750)
Nyeader in (3’ 5, 7, 9)

(Rx, Ry) for both

Rmax = 1.15, 1.1, or 1.05

panel and Rx ~ U[ 2 - Riax, Rmax]
device Ry -~ U[ 2 - Rimax, Rmax]
(Sx, Sy) for both | Spmax =0, 2, or 3 pixels
panel and Sx ~ U[- Smax, Smax]
device Sy ~ U[- Smax, Smax]

I1. reader panel
vs. device:
Transformation
Disagreeable

(nimage» nreader)

Nimagein (100, 250, 750)
Nreader in (3’ 5’ 7’ 9)

(RX! Ryl SX1 Sy)

Same as in Scenario | above

for panel
(Re Ry, Sx, S,) For each of the 9 reader panel settings, the device (Ry, Ry,
forx ’de\i’iceX’ Y/ 'Sy, Sy) parameter set is selected from the remaining 8

settings.

3.3.2 Dataset Simulation

We simulate each Study 2 image dataset and corresponding annotations using the following

steps.
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Step 1: Generate n true contours, each comprising a single randomly located and pixelized
circle. These true contours serve as the foundation for generating both reader and device
contours.

Step 2: Simulate k + 1 contours for each true contour representing annotations by k readers
and the device, respectively. This is achieved by applying the MISS tool transformations using
the parameter setting described in Table 6 to the true contours.

Two sets of contours generated using the same set of MISS parameters are defined as
Transformation Agreeable. Otherwise, they are deemed Transformation Disagreeable. Figure 2
provides an illustrative example of a true contour and various contours synthesized using the

MISS tool transformations for three experts and a Transformation Disagreeable device.

a) truth b) expert 1 C) expert 2 d) expert 3 e) device

Figure 2. Example of synthetic expert and device contours based on an initial true contour. Note, this is a
Transformation Disagreeable example where the device contour is based on a different set of MISS

parameters compared to that of the experts. a) true contour, b)-d) synthetic reader contours, €)

transformation disagreeable device contour.
For each setting in Table 6, we simulate a total of Ns;, imaging datasets. For each image
dataset, we compute image-level Dice scores for each pair of annotators. Subsequently, based on
the Dice scores computed for each image, we calculate the performance metrics as defined in

Section 3.1. The results are summarized in next subsection.
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3.3.3 Results

Below are results for image-based simulation study. Performance metrics are computed for
each setting based on Nsin=100, N;44.=100, 250, 750, and nyeqqer=3, 5, 7, 9. All results
presented here are based on the z-interval Cl approach. The results for the bootstrapping
approach are omitted as they are similar.

3.3.3.1 Scenario I: Expert panel vs. device transformation-agreeable
Table 7 summarizes the mean DSC performance of the expert panel, the mean DSC

performance difference between the device and panel, and the Type | error of the proposed
method for each Transformation Agreeable setting, as configured in Table 6. The results in Table
7 indicate that the proposed method performs well across all Transformation Agreeable settings
simulated, with Type | error close to 0.05 on average and small standard deviations (ranging
from 0.02 to 0.04) across all of the settings evaluated. These findings suggest that when the
device and expert panel share the same transformation pattern, their segmentation performance is
similar (reflected by a mean DSC difference close to 0 in Table 7), and the proposed method
achieves reasonable Type | error (ranging between 0.03 — 0.10 in Table 7, with a mean of 0.065

across all settings). Figure 3 illustrates the Type | error as a function of n;,, 4. (i.€., sample size)

and Nypqqer (1.€., panel size) for each of the nine individual settings under Scenario I:

Transformation Agreeable.

Table 7.Mean (standard deviation) for Within-Panel DSC, Device-Panel DSC, and Type 1 Error by panel
transformation pattern from Image-Simulation Study 2, Scenario I: Transformation Agreeable.

Expert Panel Transformation parameters

Smax=0 Smax=2 Smax=3
_ Rmac=1.05 0.95(0.04) 0.88(0.09) 0.84(0.13)
Reader-pair DSC Rmax=1.10 0.93(0.04) 0.87(0.09) 0.83(0.12)
Ho Ruax=1.15 0.90 (0.05)  0.85(0.09)  0.81(0.12)
Device-Reader DSC  Rya=1.05 0.05(0.04) 0.88(0.09)  0.84 (0.13)

22



fip Rmax=1.10 0.93(0.04) 0.87(0.09) 0.83(0.12)
Rmac1.15 0.90 (0.05)  0.85(0.09)  0.81(0.12)
Type 1 error Rmax=1.05 0.10 (0.04)  0.05(0.02)  0.03(0.03)
a Rmac=1.10 0.09 (0.02)  0.06 (0.02)  0.06 (0.02)
Rmnac=1.15 0.07 (0.02)  0.07 (0.03)  0.05 (0.02)
420
421
Rmax = 1.05 Smax = 0 fig = 0.95 5o = 0.04 Rmax = 1.05 Smax = 2 fig = 0.88 o = 0.09 Rmax = 1.05 Smax =3 fig= 0.84 5o = 0.13
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Rmax= 1.1 Smax =0 fig = 0.93 6= 0.04 Rmax= 1.1 Smax =2 fig = 0.87 8, =0.09 Rmax=1.1 Smax =3 fip=0.83 8,=0.12
05 05 0.5
« 0.4 « 04 « 04
o o o
© 03 ® 03 ® 03
; 0.2 ; 0.2 ; 0.2
o o o
> > >
0.0 0.0 0.0
3 5 7 9 3 5 7 9 3 5 7 9
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Rimax = 1.15 Spax = 0 fig = 0.9 8= 0.05 Rimax = 1.15 Spax = 2 fig = 0.85 5 = 0.09 Rmax = 1.15 Spax = 3 fig= 0.81 80 = 0.12
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422
423 Figure 3. Plots of the Type 1 error results by transformation pattern (Rmax, Smax) for Image Simulation Study 2,
424 Scenario I: Transformation Agreeable. The black dashed horizontal line marks the expected type 1 error
425 level of 0.05.
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3.3.3.2 Scenario II: expert panel vs. device transformation-disagreeable

Scenario Il (Transformation Disagreeable) includes 72 settings. Table 8 summarizes the mean
within-panel DSC, the mean device-panel DSC, and the Type Il error of the proposed method by
expert panel transformation pattern defined by defined by (Rmax, Smax). Each cell's summary
statistics are aggregated over the eight Transformation Disagreeable device settings

corresponding to that panel pattern.

Table 8. Mean (standard deviation) of Within-Panel DSC, Device-Panel DSC, and Type 2 Error by Panel
Transformation Pattern, Image-Simulation Study 2, Scenario I1: Transformation Disagreeable.

Expert Panel Transformation Pattern

Smax=0 Smax=2 Smax=3
i Rimax=1.05 0.95(0.04)  0.88(0.09)  0.84(0.13)
Reader F(’;") DSC Rim=1.10 0.93(0.04)  087(009)  0.83(0.12)
Ho 1% Rmax=1.15 0.90 (0.05) 0.85 (0.09) 0.81 (0.12)
_  Rma=l05 0.89(0.07)  0.87(0.09)  0.85(0.1)
DEV'CZRE’(?; PSC Rpeel.10 0.89(0.07)  0.87(0.09)  0.85(0.1)
pATP Runax=1.15 0.88(0.07)  0.86(0.08)  0.84(0.1)
Type 2 error Rmax=1.05 0.00 (0.00) 0.08 (0.18) 0.16 (0.28)
B Rimax=1.10 0.01(0.03)  0.07(0.16)  0.14(0.26)
Runax=1.15 0.01(0.04)  0.09(0.18)  0.07(0.17)

Table 8 reveals that the average Type Il error for both interval approaches is below the
threshold of 0.20, demonstrating the proposed method performs well in transformation-
disagreeable settings overall. Across all Transformation Disagreeable settings, the mean
(standard deviation) Type Il error is 0.072 (0.182) for the z-interval approach. While not
explicitly detailed, the mean (standard deviation) of the Type Il error based on bootstrap
confidence intervals is similar, at 0.070 (0.177).

The results highlight an interesting contrast in error fluctuations. Unlike Type | error, which

shows relatively small variability for both Overlap Agreeable (Figure 1) and Transformation
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Agreeable scenarios (std = 0.03, Table 7), the Type Il error exhibits low variability in Overlap
Disagreeable scenarios (Figure 1) but high variability in Transformation-Disagreeable scenarios
(std = 0.18, Table 8). This disparity arises because Transformation Disagreeable scenarios do
not necessarily equate to Overlap Disagreeable. Certain Transformation Disagreeable patterns
can still yield similar overlap-based segmentation performance. For example, the transformation
patterns (Rmax, Smax) = (1.05, 2) and (1.10, 2) produce similar mean (standard deviation) DSC
values of 0.88 (0.09) and 0.87 (0.09), respectively. The inclusion of both Overlap Agreeable and
Overlap Disagreeable cases within the transformation-disagreeable scenario contributes to higher
variability in Type Il error.

Table 8 also demonstrates that as the absolute mean DSC difference &H = [ip — [y Increases,
the mean Type Il error approaches 0. This is as expected, as the method is expected to perform
better when the DSC performance difference between the device and the panel becomes more
pronounced.

An analysis of subgroup trends reveals that as the maximum reader shift (Rmnax) increases
from 0 to 2 to 3, the mean Type Il error rises from 0.01 to 0.08 to 0.13, respectively. This
increase corresponds to a greater uncertainty in DSC performance as well because higher pixel
shift counts are allowed. In Table 8, the DSC standard deviation increases from 0.04 to 0.09 to
0.13 as Rnyax increases from 0 to 2 to 3. This trend suggests that statistical power increases when
expert transformation patterns exhibit less variability. This would be akin to a situation where all
panel members have substantial experience and expertise, resulting is less variation among their
segmentation contours. However, it is important to note that deliberately selecting experts to
ensure near-identical patterns (e.g., all from one institution with identical training) is

inappropriate, as this level of agreement is unrealistic in the broader clinical context.
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To further visualize the method’s performance for individual settings, Figure 4 illustrates the
Type Il error for each setting with fixed panel transformation parameters (Rmax, Smax) = (1.10, 2).
Results for other (Rmax, Smax) settings are omitted here and provided instead in Supplementary
Figures S3-S10, as their patterns are similar to the trends shown in Figure 4. Each subplot in
Figure 4 displays the Type Il error of the proposed method when the device adopts a

transformation pattern disagreeable to the panel across different numbers of images and experts.

RY,=1.058° =00,=0.95,=0.06 R0,,=1.0582 =20,=0.8768,=0.09 RO, =1.05S =3{,=0.858,=0.11 RO,,=1.182 =00,=0894,=0.06
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n.image - 100 . 250 [ 750

Figure 4. Type 2 error by device transformation pattern (R2,,.., S5 ,.), given panel transformation (R,qx Smax) =
(1.10, 2), with mean(std) within-panel Dice 0.87(0.09) for Image Simulation Study 2, Scenario II:
Transformation Disagreeable. The black dashed horizontal line marks type 2 error level at 0.2.

Figure 4 shows a decreasing Type Il error as sample size or panel size increases. These
trends indicate that increasing the sample size and the panel size (assuming all experts have
similar DSC performance) enhances the power of the proposed method. The results presented in

Figure 4 further corroborate the findings in Table 8, demonstrating that the proposed method
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achieves consistently low Type Il error in settings with larger difference in Dice performance,
except in transformation-disagreeable but with smaller difference in the Dice performance. But
even in these challenging cases, increasing the sample size or the number of experts in the panel
effectively reduces the Type Il error. Notably, the instances of Type Il error exceeding 0.2 in
Figure 4 are unlikely to pose practical concerns, as the DSC performance differences in these
settings are minimal (e.g., as small as 0.01) and are shown to be mitigated to below 0.2 by

increasing the sample size.

4 Application

This section illustrates a real-world example to demonstrate the practical application of the
segmentation interchangeability metric for comparison of an Al segmentation and multiple

human experts.

4.1 Database and Data Preparation

The data are taken from the LIDC-IDRI database * developed by the Lung Image Database
Consortium. This is one of the largest publicly available datasets for lung nodule detection and
segmentation. It contains data from 1010 patients (1018 studies) and 2660 nodules, with slice
thickness varying from 0.45 mm to 5.0 mm. Each study includes clinical thoracic CT images
accompanied by an XML file documenting the annotations made by four experienced thoracic
radiologists. This dataset is anonymized, and all protected health information (PHI) is removed
23.

A U-Net segmentation model with a ResNeXt encoder and ImageNet transfer learning was
trained using a subset of LIDC-IDRI data. This U-Net model was then compared to the

segmentation performance of 4 radiologist annotators using a testing dataset based on 124
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506 independent LIDC-IDRI images. Details of training and testing data preparation as well as model

507 training are provided in the Appendix A2.

508 4.2 Results

509  Figure 5 shows the distribution of DSC values for pairwise annotators. The results suggest the Al
510  model may not agree with the panel, as evidenced by a lower DSC between the Al model and the
511 readers compared to the DSC between pairwise readers. However, this visual comparison does

512 not substantiate a statistical assessment of the difference.
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513
514 Figure 5. Distribution of DSC values for each pair of annotators.
515 We now apply our proposed statistical testing method to assess the interchangeability of the

516 Al model and four radiologists in the panel. Table 10 reports the mean (standard deviation) of
517  within-panel DSC [ip(65p), the mean (standard deviation) for the Al-panel comparison fi,(6,),
518 the difference between the two d = /i, — i, and 95% CI derived from bootstrapping and z-

519  interval approaches derived using the proposed method.
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Table 9. Agreement assessment results for the U-Net model (device) and the expert panel on

the LIDC-IDRI test dataset.

dA = .aP - .aA C’i — ‘u\ _ ’a
Annotator vs. dp Aa (95% ClI) (95(;; cn A
Reference Panel (6p) (64) bootstrapping s-interval abproach
approach PP
U-Net vs. 0.7619 0.6896 0.0723 0.0723
4 readers (0.0937) (0.1172) (0.0584, 0.087) (0.0583, 0.0863)

The results in Table 9 indicate that the trained U-Net model vs. 4-reader panel comparison
yields a 95% z-interval CI of (0.0583, 0.0856) (with a similar result from the bootstrapping ClI,
as shown in Table 9). This indicates that the U-Net model has significantly lower agreement with
the panel than the within-panel agreement, and thus it is not interchangeable with the reader
panel. We note that the trained Al model presented here is used exclusively for illustrative
purposes, and the results of this specific use case should not be interpreted as evidence that U-

Net segmentation models more generally underperform relative to human experts.

5 Discussion

In this work, we developed a segmentation interchangeability metric and statistical method for
evaluating agreement between an Al device and a panel of human experts. Through a statistical
and an image-based simulation studies, we demonstrated that the proposed method exhibits well-
controlled Type | error and good Type Il error behavior. The novelty of this method lies in its
ability to directly assess the interchangeability of a segmentation Al device with multiple human
experts without requiring a reference standard. This distinguishes our method from the
traditional approach that do require defining reference standard contours. Additionally, setting an
acceptable performance goal with conventional methods is challenging due to the lack of a

widely accepted clinical cutoff for the Dice score. In contrast, our method compares device
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performance directly with an expert panel as a control, eliminating the need for a surrogate
ground truth. Setting a performance goal based on the mean DSC difference is also simpler, as
the target value is typically close to 0.

A limitation of the proposed method is it treats reader effect as fixed. This may not be a
major concern, as treating a small reader panel as fixed is not uncommon. In the context of
multi-reader studies, this approach has been used by Bandos et al. ® and discussed by Hillis and
Schartz %. It would be an interesting future direction to incorporate methods accounting for
truther panel variability to refine our proposed method as an extension. Another limitation of the
method is it is designed to assess differences in overlap-based segmentation performance not
distance-based performance. One can easily substitute other metric into the proposed method,
such as a distance-based metric, but we have not determined how well the method’s assumptions
hold.

The simulation study results indicate that increasing the sample size or the expert panel size
can enhance the power of a study utilizing the proposed method. In practice, it may be
challenging to expand the panel size while maintaining a high within-panel agreement level. As
such, increasing the sample size may be a most practical and feasible approach compared to

enlarging the panel.

Appendix A

Al Table. Configuration for Default parameters in Image-based Simulation

transform parameter configuration
detail = # of all pixels in original contour
fourier (detail, range, magnitude) | range = round(detail * 0.2) + 1
magnitude = 2
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center ~ U[0°, 360°)

height ~ estimate lesion diameter * U[0.01,
spike (center, height, width) 0.2] (randomly assign + sign)

width ~ estimate lesion diameter * U[0.01-
0.2]/2

affine - rotation | ¢ ¢ ~ U[0°, 360°)

A2 Training/Testing Data Preparation and Model Training

Based on LIDC-IDRI database, we prepare the final data to be used for method demonstration
using following steps:

1. For each nodule, we draw the central slice from each scan (if there is even number of
slices (say, 2m slices) in a scan, we take (m+1)" slice as the central slice for this scan).

2. From the imaging dataset created in Step 1, we randomly draw a 70% sample (at the
patient level) and use these cases to train an Al segmentation model (a U-net architecture
with ResNeXt Encoder that is pretrained on ImageNet Database) using an loU metric.
The reference standard mask for the training data, which is required for Al model training
purposes, is created by applying Majority Vote (MV) rule to the 4 radiologists’ manual
annotations. For illustration, the figure below presents an example of the original slice,
alongside annotations from four radiologists, the aggregated consensus derived using the

Majority Vote (MV) criterion, and the annotation extracted by the U-Net algorithm.

31



Expert 0 Expert 1 Expert 2 Expert 3

Input Slice MV Consensus U-Net Extractor

o574 Figure Al: Radiologists annotations of an LIDC-IDRI lesion along with the majority vote (MV) consensus, and the

573

575 contour produced by our U-Net segemantation algorithm.

576

577 3. From the remaining 30% of patients not used in training, we collected cases where the 4
578 radiologists agreed on the lesion (defined here as having at least a 1 pixel overlap
579 between annotations from any pair of radiologists in panel). One image per patient is then
580 randomly chosen to form the final testing dataset, resulting in 124 independent images.
581 4. Using contours generated by the algorithm and those annotated by the four radiologists
582 on the testing data, compute paired annotator Dice scores. And then the computed Dice
583 scores will be fed to the proposed method for annotator vs. reference panel
584 interchangeability assessment.
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Code, Data, and Materials Availability

The data used in the application section—LIDC-IDRI images—are publicly available at:

https://www.cancerimagingarchive.net/collection/lidc-idri/. The code developed for the proposed method

is available at #####Hlink to be inserted after manuscript clearance#####.

Figure Caption List

Figure 1.CP, Type | error and Type Il error results for the statistics-based Simulation Study 1. The figure includes
boxplot results aggregated across all the settings in Scenarios | — 1V, and for both the 2-reader and 3-reader
scenarios.

Figure 2. Example of synthetic expert and device contours based on an initial true contour. Note, this is a
Transformation Disagreeable example where the device contour is based on a different set of MISS parameters
compared to that of the experts. a) true contour, b)-d) synthetic reader contours, e) Transformation Disagreeable
device contour.

Figure 3. Plots of the Type 1 error results by transformation pattern (Rmax, Smax) for Image Simulation Study 2,
Scenario I: Transformation Agreeable. The black dashed horizontal line marks the expected type 1 error level of
0.05.

Figure 4.Type 2 error by device transformation pattern (R2 ..., S2 .,.), given panel transformation (R,,qx) Smax) =
(1.10, 2), with mean(std) within-panel Dice 0.87(0.09) for image simulation study Scenario II: Transformation
Disagreeable. The black dashed horizontal line marks desirable type 2 error level at 0.2.

Figure 5. Distribution of DSC values for each pair of annotators.

Figure Al: Radiologists annotations of an LIDC-IDRI lesion along with the majority vote (MV) consensus, and the
contour produced by our U-Net segmentation algorithm.

Table Caption List

Table 1: Parameter configuration scenarios for Study 1: statistic-based simulations.

Table 2. Results for all 32 settings in Scenario I: Equal Mean p and Equal Standard Deviation ¢ from statistics-based
simulation Study 1.

Table 3. Selected results for 8 Settings with (u, d,,, 05) = (0.85,—0.05,0.15) in Scenario II: Unequal Mean p and
Equal Standard Deviation ¢ from statistics-based Simulation Study 1.

Table 4. Selected results for 24 of 96 Settings with u, = 0.75 in Scenario I1I: Equal Mean p and Unequal Standard
Deviation ¢ from statistics-based Simulation Study 1.

Table 5. Selected results for 24 of 648 Settings with (u,,d,, 0, ) = (0.8, —0.05,0.1) in Scenario IV: Unequal Mean
u and Unequal Standard Deviation o from statistics-based Simulation Study 1.

Table 6. Configuration for tunable parameters in image-based Simulation Study 2.
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Table 7. Mean (standard deviation) for Within-Panel DSC, Device-Panel DSC, and Type 1 Error by panel
transformation pattern from Image-Simulation Study 2, Scenario I: Transformation Agreeable.

Table 8. Mean (standard deviation) of Within-Panel DSC, Device-Panel DSC, and Type 2 Error by Panel
Transformation Pattern, Image-Simulation Study 2, Scenario I1: Transformation Disagreeable.

Table 9. Agreement assessment results for the U-Net model (device) and the expert panel using the LIDC-IDRI test
dataset.
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