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Abstract   15 

Purpose: AI-based medical imaging devices often include lesion or organ segmentation capabilities. Existing 16 
methods for segmentation performance evaluation compare AI results to an aggregated reference standard using 17 
accuracy metrics like the Dice coefficient or Hausdorff Distance. However, these approaches are limited for lacking 18 
a gold standard and challenges in defining meaningful success criteria. To address this, we developed a statistical 19 
method to assess agreement between an AI device and multiple human experts without requiring a reference 20 
standard. 21 
 22 
Approach: We propose a paired-testing method evaluating whether an AI device's segmentation performance 23 
significantly differs from multiple human experts’. The method compares device-to-expert dissimilarity with expert-24 
to-expert dissimilarity, avoiding the need for a reference standard. We validated the method through: (1) statistical 25 
simulations where Dice coefficient performance is either shared ("overlap agreeable") or not shared ("overlap 26 
disagreeable") between the device and experts; (2) image-based simulations using 2D contours with shared or non-27 
shared transformation parameters ("transformation agreeable or disagreeable"). We also applied the method to 28 
compare an AI segmentation algorithm to four radiologists using data from the Lung Image Database Consortium. 29 
 30 
Results: Statistical simulations show the method controls type I error (~0.05) for overlap-agreeable and type II error 31 
(~0) for overlap-disagreeable scenarios. Image-based simulations show acceptable performance with mean type I 32 
error 0.07 (SD 0.03) for transformation-agreeable and mean type II error 0.07 (SD 0.18) for transformation-33 
disagreeable cases. 34 
 35 
Conclusions: The paired-testing method offers a new tool for assessing the agreement between an AI segmentation 36 
device and multiple human expert panelists without requiring a reference standard. 37 
 38 
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 40 
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1 Introduction 44 

The segmentation of structures and lesions within medical images is an increasing focus of 45 

artificial intelligence (AI) based medical imaging devices. Examples include devices used for 46 

delineating lesions in disease detection and diagnosis, or for outlining organs in surgical planning 47 

or radiation therapy. The evaluation of segmentation algorithm performance is critical in the 48 

medical device domain to ensure patient safety and benefit, however, there is a relatively small 49 

amount of literature addressing the evaluation of segmentation algorithm performance even 50 

though there is a significant amount of research focused on AI segmentation development. 51 

Furthermore, existing literature on segmentation performance assessment primarily focuses on 52 

reviewing and comparing performance evaluation metrics (e.g., 
1, 2

) or proposing new evaluation 53 

measures (e.g., 
3, 4

). However, these proposed metrics and measures cannot be directly used for 54 

evaluating segmentation performance in the absence of a reference standard establishing the 55 

ground truth for segmentation task assessment. In many medical imaging tasks in the literature, 56 

reference contours for each object to be segmented are often defined by multiple human experts 57 

(‘expert’ may be referred to in the literature or submissions by various terms, such as observer, 58 

reader, reviewer, or truther). While using only one expert's reference contour to evaluate device 59 

performance simplifies the analysis, this approach fails to reflect the truth variability that exists 60 

even among high-level experts. Therefore, including multiple experts' reference contours better 61 

reflects the true nature of the problem, though this introduces complexity in evaluation and 62 

analysis. This complexity necessitates robust statistical methods to appropriately handle 63 

comparison of device segmentation against multi-expert references.  64 

A commonly used assessment approach in practice is, with a reference standard contour 65 

defined, the AI segmentation output is then compared, through an overlap metric, e.g., Dice 
5
, 66 
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Jaccard 
6
, or a distance-based metric, e.g., Hausdorff distance 

1
 with the reference. A limitation 67 

of this approach is it requires prespecifying a meaningful cutoff for each metric. However, 68 

selecting and justifying a clinically meaningful performance criterion can be difficult.  69 

These two challenges with current segmentation assessment methods — the absence of a 70 

definitive reference standard contour and the difficulty of establishing a clinically meaningful 71 

performance goal — led us to explore a new statistical method that assesses interchangeability, 72 

without requiring a reference standard, between an AI segmentation and segmentations from a 73 

human expert panel. With the growing number of AI/ML segmentation devices, seeking for a 74 

more generalizable segmentation assessment approach has become a pressing need in the 75 

medical technology field.  76 

The only relevant work we found is by Zou et al.⁷, which addresses a similar problem of 77 

evaluating a segmentation algorithm against multiple truthers (Example 2 in their paper). 78 

However, their method aggregates the three human annotations into a single STAPLE-based 79 

reference, then compares the algorithm to this composite. This would still require defining an 80 

arbitrary success cutoff and leave the fundamental challenges unresolved. To address this gap, 81 

we examined methodologies for assessing continuous estimation tasks (i.e., estimation tasks for 82 

which the target quantity has a continuous value, such as area or volume measurements for 83 

organs or lesions), where agreement measures and methods have been more widely discussed. 84 

These include the Bland-Altman method 
8
, individual bioequivalence 

9
, the individual 85 

equivalence index 
10

, 
11

, the agreement index 
12

, and the individual equivalence coefficient and 86 

coefficient of individual agreement 
13

.  87 

To address segmentation agreement, we adapted the interchangeability method proposed by 88 

Obuchowski et al. 
11

 for numerical estimation to the segmentation context. The basic idea is to 89 
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condense reader-reader pairwise segmentation comparisons into a within-panel agreement score 90 

for each image and, likewise, generate a corresponding device-panel agreement score. This 91 

reformulates the segmentation comparison as a paired numerical score comparison. By tailoring 92 

Obuchowski et al.'s method, we constructed a paired test statistic and apply the resulting 93 

confidence interval to determine whether device-panel agreement significantly differs from 94 

within-panel agreement. 95 

In the remainder of the paper, we define the problem mathematically and present the 96 

proposed methodology. We next present two simulation studies: one statistic-based and the other 97 

image-based, and report the Type I and Type II errors for our proposed method.  Finally, we 98 

conclude with a discussion of the findings and potential directions for future research. 99 

2 Methodology 100 

This section outlines the problem definition and proposed methodology. For illustration 101 

simplicity, we focus on a single object to segment throughout this article. But the proposed 102 

method can be applied to multi-object scenarios in a similar way as defined here.  103 

2.1 Problem Formulation 104 

Consider a testing dataset containing n images, where each image is obtained from an 105 

independent patient and contains a single object to segment.  On this dataset, an AI device, 106 

denoted as D, segments the object of interest within each image. Concurrently, a human expert 107 

panel denoted as P, comprised of k experts, each independently performs manual annotation of 108 

the object. Each segmentation, whether by the device or an expert, is represented as a binary 109 

image.  110 
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The problem of interest is testing whether the segmentation performance of device D 111 

significantly diverges from that of the human expert panel. Symbolically, the aim is to test 112 

whether µD - µP significantly differs from zero, where µD represents the mean (dis)similarity 113 

score between the device and panel across images, and µP denotes the mean (dis)similarity score 114 

between experts within the panel across images, i.e., testing the null hypothesis 115 

H0: µD - µP = 0, 116 

against the alternative hypothesis 117 

Ha: µD - µP ≠ 0. 118 

Here, we adopt an equality-based null hypothesis formulation for simplicity, following the 119 

fashion of hypothesis formulation in the FDA guidance 
14

 where the null hypothesis is set as no 120 

treatment effect on the selected endpoint. This choice ensures alignment with the conventional 121 

definitions of Type I and Type II errors, which will be utilized for method validation later in 122 

Section 3.  123 

2.2 Related Work for Numeric Output 124 

     Obuchowski et al. 
11

 proposed a metric called individual equivalence index to measure the 125 

individual equivalence of imaging tests when the health outcome of interest is a numeric 126 

variable. This metric is defined as below:  127 

𝛾 = 𝐸(𝑌𝑗𝑇𝑖𝑘 − 𝑌𝑗𝑅𝑖𝑘′)
2
− 𝐸(𝑌𝑗𝑅𝑖𝑘 − 𝑌𝑗𝑅𝑖𝑘′)

2
       (1) 128 

where 𝑌𝑗𝑇𝑖𝑘 denotes the result or measurement by the new test modality (T) by reader i for 129 

subject j on occasion k, and 𝑌𝑗𝑅𝑖𝑘 denotes the result or measurement by the existing reference 130 

modality (R) by reader i for subject j on occasion k.  131 
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While the Obuchowski et al. 
11

 method was developed for an estimation task with a numeric 132 

output, we adapt it to quantify segmentation agreement through suitable modifications. 133 

2.3 Proposed Method 134 

2.3.1 Segmentation Interchangeability Metric 135 

From Eq. (1), it is evident that the central concept behind the interchangeability metric is to 136 

compare the dissimilarity between the new test and reference test with the dissimilarity within 137 

the reference test. Building on this idea, a natural extension of this approach to segmentation 138 

outputs is replacing the dissimilarity metric for numeric outputs adopted by Obuchowski et al. 
11

 139 

(i.e., the mean squared difference) with an appropriate segmentation dissimilarity metric. One of 140 

the most widely used similarity measures for segmentation is the Dice Similarity Coefficient 141 

(DSC) 
5
. We therefore use 1-DSC as the dissimilarity surrogate to tailor the original individual 142 

equivalence index to segmentation. Based on this modification, we propose a segmentation 143 

interchangeability metric denoted by δ, to evaluate segmentation agreement between an AI 144 

device and a panel of human readers. The proposed metric is defined as follows: 145 

𝛿 =  𝐸{1 −  𝐷𝑆𝐶(𝑑𝑒𝑣𝑖𝑐𝑒, 𝑟𝑒𝑎𝑑𝑒𝑟 𝑝𝑎𝑛𝑒𝑙)} − 𝐸{1 − 𝐷𝑆𝐶(𝑤𝑖𝑡ℎ𝑖𝑛 𝑟𝑒𝑎𝑑𝑒𝑟 𝑝𝑎𝑛𝑒𝑙)}            (2) 146 
 147 

where E denotes the expected value. Clearly, the closer 𝛿 is to zero, the more similar the device's 148 

segmentation performance is to the human reader panel. The Dice coefficient for paired 149 

segmentations on a single image is always positive and ranges between zero and one. These 150 

properties make this segmentation interchangeability metric (𝛿) well-suited for evaluating 151 

segmentation performance at the individual image level.   152 
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2.3.2 Point Estimate  153 

The point estimator for the proposed interchangeability metric (2) can be easily derived as 154 

below. 155 

𝛿̂ =
1

n
∑ δ̂(j)𝑛
𝑗=1  =

1

n
∑ {

1

k
∑ [1 − 𝐷𝑆𝐶𝐷𝑖(𝑗)] −

2

k(k−1)
∑ ∑ [1 − 𝐷𝑆𝐶𝑖𝑖′(𝑗)]

𝑘

𝑖′=𝑖+1
 𝑘

𝑖=1 }𝑘
𝑖=1

𝑛
𝑗=1         (3)  156 

 It can also alternatively be expressed as: 157 

𝛿̂ =
1

nk
∑ ∑ δ̂i(j)

𝑘
𝑖=1

𝑛
𝑗=1  =

1

nk
∑ ∑ {[1 − 𝐷𝑆𝐶𝐷𝑖(𝑗)] −

1

k−1
∑ [1 − 𝐷𝑆𝐶𝑖𝑖′(𝑗)]
𝑘
𝑖′=1 
𝑖′≠𝑖

}𝑘
𝑖=1

𝑛
𝑗=1        (4) 158 

From the formulae (3) and (4), we can see δ̂i(j) is defined as the mean difference between 159 

device and the i
th

 individual reader on j
th

 image, δ̂(j) is the mean δ̂i(j) across all readers for j
th

 160 

image, and 𝛿̂ is the mean of  δ̂(j) across all images. 161 

2.3.3 Confidence Interval 162 

Various approaches can be used to construct confidence intervals (CIs) for 𝛿̂.  In this study, 163 

we used both a parametric and non-parametric method to construct CIs.  The parametric method 164 

estimates the z-interval, given by 𝛿̂ ± 𝑍𝛼/2 𝑆, where 𝑆 = √
1

𝑛−1
∑ (δ̂(j) − δ̂)

2𝑛
𝑗  is the sample 165 

standard deviation of δ̂(j), and the non-parametric method is a bootstrap approach that follows 166 

the procedure outlined in 
11

.  167 

A CI covering zero indicates that no significant difference in overlap-based segmentation 168 

performance between device and panel. Note, this should not be interpreted as the two are the 169 

same but only that a difference could not be established statistically 
14

.  A CI entirely below zero 170 

indicates device-panel segmentation agreement is statistically higher than the within-panel 171 

agreement, while a CI above zero indicates the device-panel agreement is significantly lower 172 

than the within-panel agreement.   173 
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3 Simulation Studies 174 

This section presents the design and results from our simulation studies conducted as part of the 175 

method validation process.  176 

3.1  Overall Study Design 177 

3.1.1 Study Overview 178 

In this article, we undertake two primary types of simulation studies to validate our proposed 179 

method. Simulation Study 1 is a statistics-based simulation study, which simulates Dice scores 180 

from a predefined statistical distribution. This approach defines the 181 

'agreement/interchangeability' between readers and devices by controlling the Dice distribution 182 

characteristics for each. This simulation allows for the assessment of our segmentation 183 

interchangeability metric across a range of Dice distributions.  A limitation of the Simulation 184 

Study 1 design is it may not perfectly capture relationships inherent in image-generated Dice 185 

scores. The relationship here refers to the correlations between pairwise Dice scores coming 186 

from segmentations of the same objects from different annotators. Simulating Dice scores simply 187 

by sampling from a statistical distribution may not fully capture these relationships.   188 

To address this limitation, we conducted Simulation Study 2 where we directly compute Dice 189 

scores from contour masks rather than simulating Dice scores directly. To achieve this, we 190 

employed the Medical Image Segmentation Synthesis (MISS) Tool, developed by Guan et al. 
15

 191 

to synthesize multiple segmentation masks. The MISS Tool has a set of adjustable parameters 192 

simulating six types of segmentation errors.  Using the MISS Tool, we generate Dice scores by 193 

applying the following process: (1) simulate a set of truth contours, (2) generate reader and 194 

device annotation variations using the MISS tool based on the true contours, and (3) calculate the 195 
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Dice scores from the simulated contours. Study 2 establishes 'agreement/interchangeability' 196 

between readers and devices by either using the same or different transformation parameters 197 

within the MISS Tool. To distinguish between the two simulation studies, we refer to 198 

(dis)agreement in Study 1 as “overlap (dis)agreeable” and in Study 2 as “transformation 199 

(dis)agreeable”.    200 

3.1.2 Performance Metrics 201 

For Study 1, we evaluate the performance of the proposed method using three metrics:  202 

1. Type I Error: The probability of incorrectly rejecting the null hypothesis (H0) when it is 203 

actually true. 204 

2. Type II Error: The probability of failing to reject the null hypothesis (H0) when it is 205 

actually false.  206 

3. Coverage Probability (CP): The proportion of times a confidence interval contains the 207 

true value of the parameter being estimated (in our case, the true value of δ). 208 

A desirable method is expected to have type I error near 0.05 for agreeable cases, type II 209 

error below 0.2 for disagreeable cases assuming a statistical power of 0.80, and CP near the 210 

confidence level (set as 0.95 in our study). 211 

For Study 2 (image-based simulation), we assess performance using Type I and Type II 212 

errors. Coverage Probability (CP) is not applicable as the true value of δ is unknown because the 213 

mean Dice performance cannot be directly controlled or defined using the MISS tool.  214 
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3.2 Study 1: Statistics-based Simulation 215 

3.2.1 Parameter Configuration 216 

In Simulation Study 1, the number of readers in the panel, denoted as k, are either 2 or 3 in our 217 

experiments. We define the following global parameters for each simulation conduction: 218 

 (𝝁𝟎, 𝝈𝟎): mean and standard deviation for any reader-reader pair DSC. 219 

 (𝒅𝝁, 𝒅𝝈), where 𝑑𝜇 = µ𝐷 − µ0, 𝑑𝜎 = 𝜎𝐷 − 𝜎0, with µ𝐷 𝑎𝑛𝑑 𝜎𝐷 representing the mean and 220 

standard deviation of DSC for any device-reader pair.  𝑑𝜇 and 𝑑𝜎 correspond to the 221 

differences in the means and standard deviations for the device-reader DSC and the 222 

reader-reader DSC. 223 

 (ρ0, ρD, ρD0): pairwise reader-reader DSC correlation ρ0, pairwise device-reader DSC 224 

correlation ρD, and the between device-reader and reader-reader DSC correlation ρD0, 225 

respectively.  226 

To mirror real-world data variations, where within-panel and device-panel dissimilarities 227 

may have different means and standard deviations, we explore four scenarios:  228 

I. equal mean, equal variance (Overlap Agreeable): µ𝐷 = µ0, 𝜎𝐷 = 𝜎0;  229 

II. unequal mean, equal variance (Overlap Disagreeable): µ𝐷 ≠ µ0, 𝜎𝐷 = 𝜎0;  230 

III. equal mean, unequal variance (Overlap Agreeable): µ𝐷 = µ0, 𝜎𝐷 ≠ 𝜎0;  231 

IV. unequal mean, unequal variance (Overlap Disagreeable): µ𝐷 ≠ µ0, 𝜎𝐷 ≠ 𝜎0.  232 

Parameter configurations for these scenarios are presented in Table 1.  233 

Table 1: Parameter configuration scenarios for Study 1: statistic-based simulations.   234 

Scenario  Parameter configuration 

I. equal µ, equal 

σ (overlap 

agreeable): 32 

(µ0, σ0) 
µ0 in {0.75, 0.8, 0.85, 0.9} 

σ0 in {0.025, 0.05, 0.1, 0.15} 

(dµ, dσ) dµ = 0, dσ = 0 
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settings total 
 (ρ0, ρD, ρD0) 

ρ0 = ρD = ρD0 in {moderate, strong/very strong} (correlation 

criteria is described above in Section 3.2.1) 

II. unequal µ, 

equal σ (overlap 

disagreeable): 

512 settings total 

(µ0, σ0) 
µ0 in {0.75, 0.8, 0.85, 0.9} 

σ0 in {0.025, 0.05, 0.1, 0.15} 

(dµ, dσ) dµ in {-0.05, -0.1, -0.25, -0.5}, dσ = 0 

 (ρ0, ρD, ρD0) 

ρ0 in {moderate, strong/very strong}  

ρD in {moderate, strong/very strong}  

ρD0 in {weak, very weak}  

III. equal µ, 

unequal σ 

(overlap Dice 

agreeable): 96 

settings total 

(µ0, σ0) 
µ0 in {0.75, 0.8, 0.85, 0.9} 

σ0 in {0.025, 0.05, 0.1} 

(dµ, dσ) dµ = 0, dσ in {0.02, 0.05, 0.1, 0.15}   

 (ρ0, ρD, ρD0) ρ0 = ρD = ρD0 in {moderate, strong/very strong}   

IV. unequal µ, 

unequal σ 

(overlap 

disagreeable): 

648 settings total 

(µ0, σ0) 
µ0 in {0.8, 0.85, 0.9} 

σ0 in {0.025, 0.05, 0.1} 

(dµ, dσ) 
dµ in {-0.05, -0.1, -0.25}, 

dσ in {0.02, 0.1, 0.2} 

 (ρ0, ρD, ρD0) 

ρ0 in {moderate, strong/very strong} 

ρD in {moderate, strong/very strong} 

ρD0 in {weak, very weak} 

 235 

 (μ0, σ0) values in Table 1 were determined based on the mean and standard deviation values 236 

reported in the existing literature for human-observer-pair Dice scores in tasks such as CT-scan 237 

lung nodule/tumor segmentation and liver tumor/brain hematomas segmentation (e.g., 
16, 17

). (dμ, 238 

dσ) values in Table 1 were defined based on our exploration of LIDC-based synthesized data. In 239 

practice device performance is typically lower than human experts, thus dμ is set to be non-240 

positive in our studies, and dσ is set to be non-negative across all settings. (ρ0, ρD, ρD0) 241 

configurations in Table 1 are based on the following assumptions: 1) Dice scores drawn from 242 

distributions with the same mean exhibit moderate or higher correlation, whereas Dice scores 243 

drawn from distributions with different means demonstrate weak or lower correlation (criteria for 244 

defining different correlation strength categories are described in Section 3.2.2); and 2) an equi-245 

correlation-category assumption is used to define correlation structure for between annotator-246 

pair-Dice (details see next section 3.2.2). 247 
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3.2.2 Dataset Simulation 248 

For each setting configured in Table 1, we simulated a total of 𝑁𝑠𝑖𝑚 = 1000 datasets. Each 249 

dataset contained k readers. Thus there is a total of k*(k-1)/2 reader-pair DSCs and k device-250 

reader-pair DSCs for each of n images. Dice scores were generated using a multivariate Beta 251 

distribution as follows: 252 

Step 1: Compute the Beta shape parameters (a0, b0) and (aD, bD) corresponding to the pre-253 

specified mean and standard deviation of (µ0, σ0) and (µD, σD) for the reader-reader Dice 254 

distribution and the device-reader Dice distribution, respectively. 255 

Step 2: Generate the correlation matrix for pairwise Dices based on the pre-specified 256 

correlation strength categories (ρ0, ρD, ρD0) using the following: Set the diagonal elements in the 257 

correlation matrix to 1. The upper triangle in the matrix was defined by randomly generating 258 

correlation coefficients between pairwise reader-reader DSCs (DSCii’ vs. DSCjj’, 1≤i<i’≤k, 259 

1≤j<j’≤k, i<j) based on  260 

𝐶𝑜𝑟𝑟(𝐷𝑆𝐶𝑖𝑖’, 𝐷𝑆𝐶𝑗𝑗’) ~ 

{
 
 

 
 
𝑈(0, 0.2)          𝑖𝑓  𝜌0  =  “𝑣𝑒𝑟𝑦 𝑤𝑒𝑎𝑘”

𝑈[0.2, 0.4)        𝑖𝑓  𝜌0  =  “𝑤𝑒𝑎𝑘”          

𝑈[0.4, 0.6)        𝑖𝑓  𝜌0  =  “𝑚𝑜𝑑𝑒𝑟𝑎𝑡𝑒”  

𝑈[0.6, 0.8)        𝑖𝑓  𝜌0  =  “𝑠𝑡𝑟𝑜𝑛𝑔”       

𝑈[0.8, 1)          𝑖𝑓𝜌0 = “𝑣𝑒𝑟𝑦 𝑠𝑡𝑟𝑜𝑛𝑔”

 

where U stands for the uniform distribution. The correlation categorization criteria here is taken 261 

from the guidelines established by Evans 
18

, which are consistent with those used by LaMorte 
19

 262 

and Swinscow and Campbell 
20

. Correlation between pairwise device-reader DSCs (ρD), and 263 

between reader-reader DSCs and device-reader DSCs (ρD0) were determined in a similar fashion. 264 

The correlation matrix, denoted as Σ and having dimensions k(k+1)/2 by k(k+1)/2, is symmetric; 265 

therefore, the lower triangle can be filled by mirroring the upper triangle. 266 

Step 3: Generate all annotator-pair DSCs via multivariate beta distribution as follows. 267 
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(𝐷𝑆𝐶12, … , 𝐷𝑆𝐶(𝑘−1)𝑘; 𝐷𝑆𝐶𝐷1, … , 𝐷𝑆𝐶𝐷𝑘)~ 𝑀𝑢𝑙𝑡𝑖𝐵𝑒𝑡𝑎{𝑎⃗ , 𝑏⃗⃗, Σ} 

where 𝑎⃗ = (a01⃗⃗
(𝑘−1)𝑘/2 , aD1⃗⃗

𝑘), 𝑏⃗⃗ = (b01⃗⃗
(𝑘−1)𝑘/2 , bD1⃗⃗

𝑘) 𝑎𝑛𝑑 1⃗⃗ refers to an all-ones vector.  268 

The beta shape parameters reflect the desired means and standard deviations from Step 1 and  Σ 269 

is the correlation matrix generated in Step 2. This step is implemented using modified code from 270 

21
.  271 

The statistical simulation was run using a non-synchronized parallelization techniques to 272 

efficiently scale the large-scale simulations on a High-Performance Computing (HPC) clusters, 273 

and the Pierre L'Ecuyer's 
22

 'RngStreams' function was used to generate multiple independent 274 

pseudo-random number streams ensuring no overlap across array job tasks.  275 

3.2.3 Results  276 

Below are selected results from the statistics-based simulation study. Note that in the rest of 277 

the article, 𝑛𝑟𝑒𝑎𝑑𝑒𝑟 and 𝑛𝑖𝑚𝑎𝑔𝑒  are used interchangeably with k and n, respectively, for ease of 278 

reference. Performance metrics are computed for each setting based on 𝑁𝑆𝑖𝑚=1000, 𝑛𝑖𝑚𝑎𝑔𝑒=400, 279 

and 𝑛𝑟𝑒𝑎𝑑𝑒𝑟=2 and 3.    280 

Figure 1 presents boxplots of the coverage probabilities (CP) and Type I/II error results for 281 

both 2 and 3 readers across all conditions for the four scenarios. Tables 2–5 provide detailed 282 

results for the Type I/II error and CP for the individual settings.  The tables include results for 283 

the 3-reader scenario and include bootstrap CIs for all 32 settings in Scenario I and selected 284 

settings from Scenarios II–IV. The 2-reader scenario and z-interval CIs are similar. The selected 285 

settings from scenarios II and IV only include the  𝑑µ = −0.05 setting as the type II error would 286 

only be smaller for larger absolute differences 𝑑µ < −0.05. 287 
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From Figure 1 and Tables 2–5, it is evident that the proposed method performs well. 288 

Specifically, Type I error remains close to 0.05 across all settings for overlap-agreeable cases 289 

(Scenarios I and III), Type II error approaches 0 in all settings for overlap-disagreeable cases 290 

(Scenarios II and IV), and CP consistently hovers around 0.95 across all the scenarios.291 

 292 

Figure 1. CP, Type I error and Type II error results for the statistics-based Simulation Study 1.  The figure includes 293 

boxplot results aggregated across all the settings in Scenarios I – IV, and for both the 2-reader and 3-294 

reader scenarios. 295 

 296 

Table 2. Results for all 32 settings in Scenario I: Equal Mean 𝜇 and Equal Standard Deviation 𝜎 fromstatistics-based 297 
simulation Study 1. 298 

𝜇0 𝜎0 ρ0= ρD= ρD0 CP Type I Error 

0.75 0.025 moderate 0.937 0.063 

0.8 0.025 moderate 0.955 0.045 

0.85 0.025 moderate 0.947 0.053 

0.9 0.025 moderate 0.943 0.057 

0.75 0.05 moderate 0.949 0.051 

0.8 0.05 moderate 0.93 0.07 

0.85 0.05 moderate 0.951 0.049 

0.9 0.05 moderate 0.939 0.061 

0.75 0.1 moderate 0.942 0.058 

0.8 0.1 moderate 0.948 0.052 

0.85 0.1 moderate 0.949 0.051 

0.9 0.1 moderate 0.953 0.047 

0.75 0.15 moderate 0.95 0.05 

0.8 0.15 moderate 0.946 0.054 
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0.85 0.15 moderate 0.962 0.038 

0.9 0.15 moderate 0.948 0.052 

0.75 0.025 strong/very strong 0.957 0.043 

0.8 0.025 strong/very strong 0.961 0.039 

0.85 0.025 strong/very strong 0.95 0.05 

0.9 0.025 strong/very strong 0.936 0.064 

0.75 0.05 strong/very strong 0.957 0.043 

0.8 0.05 strong/very strong 0.942 0.058 

0.85 0.05 strong/very strong 0.941 0.059 

0.9 0.05 strong/very strong 0.935 0.065 

0.75 0.1 strong/very strong 0.948 0.052 

0.8 0.1 strong/very strong 0.942 0.058 

0.85 0.1 strong/very strong 0.932 0.068 

0.9 0.1 strong/very strong 0.948 0.052 

0.75 0.15 strong/very strong 0.945 0.055 

0.8 0.15 strong/very strong 0.941 0.059 

0.85 0.15 strong/very strong 0.961 0.039 

0.9 0.15 strong/very strong 0.95 0.05 

 299 

Table 3. Selected results for 8 Settings with (𝜇0, 𝑑µ, 𝜎0) = (0.85, −0.05, 0.15) in Scenario II: Unequal Mean 𝜇 and 300 
Equal Standard Deviation 𝜎 from statistics-based Simulation Study 1. 301 

 302 

𝜇0 dµ 𝜎0 ρ0 ρD ρD0 Type II error CP 

0.85 -0.05 0.15 moderate moderate 

very 

weak 0 0.955 

0.85 -0.05 0.15 moderate moderate weak 0 0.939 

0.85 -0.05 0.15 moderate 

strong/very 

strong 

very 

weak 0.002 0.94 

0.85 -0.05 0.15 moderate 

strong/very 

strong weak 0 0.944 

0.85 -0.05 0.15 

strong/very 

strong moderate 

very 

weak 0 0.946 

0.85 -0.05 0.15 

strong/very 

strong moderate weak 0 0.94 

0.85 -0.05 0.15 

strong/very 

strong 

strong/very 

strong 

very 

weak 0.001 0.942 

0.85 -0.05 0.15 

strong/very 

strong 

strong/very 

strong weak 0 0.941 

 303 

Table 4. Selected results for 24 of 96 Settings with 𝜇0 = 0.75 in Scenario III: Equal Mean 𝜇 and Unequal Standard 304 
Deviation 𝜎 from statistics-based Simulation Study 1. 305 

 306 
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𝜇0 𝜎0 𝑑𝜎 ρ0= ρD= ρD0 Type I error CP 

0.75 0.025 0.15 strong or very strong 0.054 0.946 

0.75 0.1 0.02 moderate 0.048 0.952 

0.75 0.05 0.02 moderate 0.058 0.942 

0.75 0.025 0.02 moderate 0.05 0.95 

0.75 0.1 0.05 moderate 0.049 0.951 

0.75 0.05 0.05 moderate 0.054 0.946 

0.75 0.025 0.05 moderate 0.048 0.952 

0.75 0.1 0.1 moderate 0.067 0.933 

0.75 0.05 0.1 moderate 0.056 0.944 

0.75 0.025 0.1 moderate 0.061 0.939 

0.75 0.1 0.15 moderate 0.055 0.945 

0.75 0.05 0.15 moderate 0.058 0.942 

0.75 0.025 0.15 moderate 0.054 0.946 

0.75 0.1 0.02 strong or very strong 0.066 0.934 

0.75 0.05 0.02 strong or very strong 0.048 0.952 

0.75 0.025 0.02 strong or very strong 0.052 0.948 

0.75 0.1 0.05 strong or very strong 0.051 0.949 

0.75 0.05 0.05 strong or very strong 0.05 0.95 

0.75 0.025 0.05 strong or very strong 0.055 0.945 

0.75 0.1 0.1 strong or very strong 0.042 0.958 

0.75 0.05 0.1 strong or very strong 0.055 0.945 

0.75 0.025 0.1 strong or very strong 0.059 0.941 

0.75 0.1 0.15 strong or very strong 0.046 0.954 

0.75 0.05 0.15 strong or very strong 0.061 0.939 

 307 

Table 5. Selected results for 24 of 648 Settings with (𝜇0, 𝑑µ, 𝜎0) = (0.8, −0.05, 0.1) in Scenario IV: Unequal Mean 308 
𝜇 and Unequal Standard Deviation 𝜎 from statistics-based Simulation Study 1. 309 

𝜇0 𝑑𝜇 𝜎0 𝑑𝜎 ρ0 ρD ρD0 Type II error CP 

0.8 -0.05 0.1 0.2 moderate moderate very weak 0.007 0.956 

0.8 -0.05 0.1 0.2 moderate moderate weak 0.002 0.956 

0.8 -0.05 0.1 0.2 moderate strong/very strong very weak 0.033 0.952 

0.8 -0.05 0.1 0.2 moderate strong/very strong weak 0.02 0.932 

0.8 -0.05 0.1 0.2 strong/very strong moderate very weak 0.009 0.952 

0.8 -0.05 0.1 0.2 strong/very strong moderate weak 0.003 0.947 

0.8 -0.05 0.1 0.2 strong/very strong strong/very strong very weak 0.036 0.945 

0.8 -0.05 0.1 0.2 strong/very strong strong/very strong weak 0.018 0.95 

0.8 -0.05 0.1 0.1 moderate moderate very weak 0 0.959 

0.8 -0.05 0.1 0.1 moderate moderate weak 0 0.947 

0.8 -0.05 0.1 0.1 moderate strong/very strong very weak 0 0.948 

0.8 -0.05 0.1 0.1 moderate strong/very strong weak 0 0.948 

0.8 -0.05 0.1 0.1 strong/very strong moderate very weak 0 0.937 
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0.8 -0.05 0.1 0.1 strong/very strong moderate weak 0 0.945 

0.8 -0.05 0.1 0.1 strong/very strong strong/very strong very weak 0.001 0.946 

0.8 -0.05 0.1 0.1 strong/very strong strong/very strong weak 0 0.935 

0.8 -0.05 0.1 0.02 moderate moderate very weak 0 0.951 

0.8 -0.05 0.1 0.02 moderate moderate weak 0 0.943 

0.8 -0.05 0.1 0.02 moderate strong/very strong very weak 0 0.954 

0.8 -0.05 0.1 0.02 moderate strong/very strong weak 0 0.941 

0.8 -0.05 0.1 0.02 strong/very strong moderate very weak 0 0.938 

0.8 -0.05 0.1 0.02 strong/very strong moderate weak 0 0.951 

0.8 -0.05 0.1 0.02 strong/very strong strong/very strong very weak 0 0.952 

0.8 -0.05 0.1 0.02 strong/very strong strong/very strong weak 0 0.946 

 310 

3.3  Simulation Study 2: Image-based Simulation Study 311 

In Study 2, we directly compute Dice scores from contour masks rather than simulating Dice 312 

scores from statistical distributions. To achieve this, we employed the Medical Image 313 

Segmentation Synthesis (MISS) Tool, developed by Guan et al.
15

 to synthesize segmentation 314 

masks with multiple controlled types of segmentation errors, such as spiculations and 315 

shape/alignment changes. 316 

MISS-Tool Overview 317 

The MISS-tool emulates segmentation errors by modifying truth masks of anatomical objects 318 

through a set of adjustable parameters that simulate six typical segmentation errors: boundary 319 

spiculation, under/over-sizing, centroid location errors, overlap variations, shape/alignment 320 

details, and the introduction of satellite structures. These segmentation error types are 321 

implemented through four primary image processing methods: 322 

1. Affine Transformation: Modifies segmentation contours through resizing (changing 323 

height and width ratios), shifting (location changes in x, y coordinates), and rotation 324 
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(angle parameter). 325 

2. Spiculation: Adjusts contours in polar coordinates by adding Gaussian functions to 326 

create spike-like protrusions or indentations on boundaries, representing boundary 327 

irregularities.  328 

3. Fourier Descriptor (FD) Modification: Modifies contours in the spatial frequency 329 

domain by keeping low-frequency components (basic shape) while allowing changes to 330 

middle-frequency components and removing high-frequency components (fine details of 331 

the shape). 332 

4. Satellite Structure Synthesis: Adds separate small objects in nearby regions of the true 333 

object, simulating disconnected components that are incorrectly included in segmentation 334 

results.  335 

For our simulation study, we employed three of the four image processing methods (affine 336 

transformation, spiculation, and Fourier descriptor modification) to generate synthetic 337 

segmentation variations that approximate potential segmentation difference between different 338 

annotators. 339 

3.3.1 Parameter Configuration 340 

In Study 2, we consider cases containing synthetic contours with 3, 5, 7 and 9 readers. Contours 341 

made by all annotators on the same image are provided as 2D binary images of identical 342 

dimensions. We define the following parameters to control the synthetic contours used in Study 343 

2 based on the MISS-tool methodology:  344 
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 Affine transformation parameters: Resizing ratios (Rx, Ry): control the width and 345 

height scaling of the segmentation boundaries, where ratios equal to 1 mean no change. 346 

Location shift (Sx, Sy): controls spatial displacement in x and y coordinates measured in 347 

pixels. Rotation angle (φ): controls the rotational variation of the segmented contours. 348 

 Fourier transformation parameters: (as shown in the Supplementary Figure S1) 349 

Detail: number of non-zero Fourier descriptors from low to high frequences that will be 350 

kept or modified. This controls the level of boundary detail preservation, where higher 351 

values retain more fine-grained boundary features. Range: number of Fourier descriptors 352 

with middle frequency components to be modified. This determines the frequency 353 

bandwidth of modifications applied to the contour. Magnitude: strength value 354 

controlling how the middle-ranged Fourier descriptors are modified.  This determines the 355 

extent of shape changes applied through frequency domain manipulation.  356 

 Spiculation parameters: for adding Gaussian functions to create spike-like protrusions 357 

in polar coordinates (as shown in the Supplementary Figure S2), the following 358 

parameters are used: Center (c): angular position (in degrees, 0-360°) where 359 

spiculation is added to the contour boundary. Height (h): magnitude of spike protrusion 360 

or indentation, where positive values create convex spiculations and negative values 361 

create concave indentations. Width (w): angular spread of the spiculation feature, 362 

determining how broad the spike modification appears on the boundary.    363 

We then explored two scenarios in Study 2: 364 

I. device segmentation is Transformation Agreeable with the reader panel, and  365 

II. device segmentation is Transformation Disagreeable with the reader panel.  366 
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Each setting is characterized by the 11 parameters defined above. Four affine parameters 367 

(Rx, Ry, Sx, Sy) are used as “tunable” parameters, which introduce variability across settings. 368 

The remaining seven parameters (including all Fourier and spike transformation parameters) are 369 

designated as “default” parameters, maintaining uniformity across all settings. Table 6 and 370 

Appendix A.1 present the configurations for the tunable and default parameters for the two 371 

scenarios being studied. This design allows us to approximate the range of DSC distributions 372 

reported in the literature, as confirmed in results later.  373 

 Table 6. Configuration for tunable parameters in image-based Simulation Study 2.  374 

scenario parameters configuration 

I. reader panel 

vs. device: 

Transformation 

Agreeable 

(𝑛𝑖𝑚𝑎𝑔𝑒, 𝑛𝑟𝑒𝑎𝑑𝑒𝑟) 
𝑛𝑖𝑚𝑎𝑔𝑒  in (100, 250, 750) 

𝑛𝑟𝑒𝑎𝑑𝑒𝑟 in (3, 5, 7, 9) 

(Rx, Ry) for both 

panel and 

device 

Rmax = 1.15, 1.1, or 1.05 

Rx ~ U[ 2 - Rmax, Rmax] 

Ry ~ U[ 2 - Rmax, Rmax] 

(Sx, Sy) for both 

panel and 

device 

Smax = 0, 2, or 3 pixels 

Sx ~ U[- Smax, Smax] 

Sy ~ U[- Smax, Smax] 

II. reader panel 

vs. device: 

Transformation 

Disagreeable 

(𝑛𝑖𝑚𝑎𝑔𝑒, 𝑛𝑟𝑒𝑎𝑑𝑒𝑟) 
𝑛𝑖𝑚𝑎𝑔𝑒in (100, 250, 750) 

𝑛𝑟𝑒𝑎𝑑𝑒𝑟 in (3, 5, 7, 9) 

(Rx, Ry, Sx, Sy) 

for panel 
Same as in Scenario I above 

(Rx, Ry, Sx, Sy) 

for device 

For each of the 9 reader panel settings, the device (Rx, Ry, 

Sx, Sy) parameter set is selected from the remaining 8 

settings.  

 375 

3.3.2 Dataset Simulation 376 

We simulate each Study 2 image dataset and corresponding annotations using the following 377 

steps.  378 
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Step 1: Generate 𝑛 true contours, each comprising a single randomly located and pixelized 379 

circle. These true contours serve as the foundation for generating both reader and device 380 

contours. 381 

Step 2: Simulate 𝑘 + 1 contours for each true contour representing annotations by 𝑘 readers 382 

and the device, respectively. This is achieved by applying the MISS tool transformations using 383 

the parameter setting described in Table 6 to the true contours.  384 

Two sets of contours generated using the same set of MISS parameters are defined as 385 

Transformation Agreeable. Otherwise, they are deemed Transformation Disagreeable. Figure 2 386 

provides an illustrative example of a true contour and various contours synthesized using the 387 

MISS tool transformations for three experts and a Transformation Disagreeable device.  388 

      389 

a)  truth         b) expert 1          c) expert 2        d) expert 3         e) device 390 

Figure 2. Example of synthetic expert and device contours based on an initial true contour.  Note, this is a 391 

Transformation Disagreeable example where the device contour is based on a different set of MISS 392 

parameters compared to that of the experts.  a) true contour, b)-d) synthetic reader contours, e) 393 

transformation disagreeable device contour. 394 

For each setting in Table 6, we simulate a total of NSim imaging datasets. For each image 395 

dataset, we compute image-level Dice scores for each pair of annotators. Subsequently, based on 396 

the Dice scores computed for each image, we calculate the performance metrics as defined in 397 

Section 3.1. The results are summarized in next subsection.  398 
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3.3.3 Results  399 

Below are results for image-based simulation study. Performance metrics are computed for 400 

each setting based on NSim=100, 𝑛𝑖𝑚𝑎𝑔𝑒=100, 250, 750, and 𝑛𝑟𝑒𝑎𝑑𝑒𝑟=3, 5, 7, 9. All results 401 

presented here are based on the z-interval CI approach. The results for the bootstrapping 402 

approach are omitted as they are similar. 403 

3.3.3.1 Scenario I: Expert panel vs. device transformation-agreeable 404 

Table 7 summarizes the mean DSC performance of the expert panel, the mean DSC 405 

performance difference between the device and panel, and the Type I error of the proposed 406 

method for each Transformation Agreeable setting, as configured in Table 6. The results in Table 407 

7 indicate that the proposed method performs well across all Transformation Agreeable settings 408 

simulated, with Type I error close to 0.05 on average and small standard deviations (ranging 409 

from 0.02 to 0.04) across all of the settings evaluated. These findings suggest that when the 410 

device and expert panel share the same transformation pattern, their segmentation performance is 411 

similar (reflected by a mean DSC difference close to 0 in Table 7), and the proposed method 412 

achieves reasonable Type I error (ranging between 0.03 – 0.10 in Table 7, with a mean of 0.065 413 

across all settings). Figure 3 illustrates the Type I error as a function of 𝑛𝑖𝑚𝑎𝑔𝑒 (i.e., sample size) 414 

and 𝑛𝑟𝑒𝑎𝑑𝑒𝑟 (i.e., panel size) for each of the nine individual settings under Scenario I: 415 

Transformation Agreeable. 416 

 Table 7. Mean (standard deviation) for Within-Panel DSC, Device-Panel DSC, and Type 1 Error by panel 417 
transformation pattern from Image-Simulation Study 2, Scenario I: Transformation Agreeable. 418 

 419 

 Expert Panel Transformation parameters 

  

Smax=0 Smax=2 Smax=3 

Reader-pair DSC  

𝜇̂0 

Rmax=1.05 0.95 (0.04) 0.88 (0.09) 0.84 (0.13) 

0.83 (0.12) Rmax=1.10 0.93 (0.04) 0.87 (0.09) 

Rmax=1.15 0.90 (0.05) 0.85 (0.09) 0.81 (0.12) 

Device-Reader DSC Rmax=1.05 0.95 (0.04) 0.88 (0.09) 0.84 (0.13) 
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𝜇̂𝐷 Rmax=1.10 0.93 (0.04) 0.87 (0.09) 0.83 (0.12) 

Rmax=1.15 0.90 (0.05) 0.85 (0.09) 0.81 (0.12) 

Type 1 error  

𝛼 
 

Rmax=1.05 0.10 (0.04) 0.05 (0.02) 0.03 (0.03) 

Rmax=1.10 0.09 (0.02) 0.06 (0.02) 0.06 (0.02) 

Rmax=1.15 0.07 (0.02) 0.07 (0.03) 0.05 (0.02) 

  420 

 421 

 422 

Figure 3. Plots of the Type 1 error results by transformation pattern (Rmax, Smax) for Image Simulation Study 2, 423 
Scenario I: Transformation Agreeable. The black dashed horizontal line marks the expected type 1 error 424 
level of 0.05.   425 
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  426 

3.3.3.2 Scenario II: expert panel vs. device transformation-disagreeable 427 

  428 

Scenario II (Transformation Disagreeable) includes 72 settings. Table 8 summarizes the mean 429 

within-panel DSC, the mean device-panel DSC, and the Type II error of the proposed method by 430 

expert panel transformation pattern defined by defined by (Rmax, Smax). Each cell's summary 431 

statistics are aggregated over the eight Transformation Disagreeable device settings 432 

corresponding to that panel pattern. 433 

Table 8. Mean (standard deviation) of Within-Panel DSC, Device-Panel DSC, and Type 2 Error by Panel 434 
Transformation Pattern, Image-Simulation Study 2, Scenario II: Transformation Disagreeable. 435 

 436 

  Expert Panel Transformation Pattern 

 

 Smax=0 Smax=2 Smax=3 

Reader-pair DSC  

𝜇̂0 (𝜎̂0) 

Rmax=1.05 0.95 (0.04) 0.88 (0.09) 0.84 (0.13) 

0.83 (0.12) Rmax=1.10 0.93 (0.04) 0.87 (0.09) 

Rmax=1.15 0.90 (0.05) 0.85 (0.09) 0.81 (0.12) 

Device-Reader DSC:  

𝜇̂𝐷 (𝜎̂𝐷) 

Rmax=1.05 0.89 (0.07) 0.87 (0.09) 0.85 (0.1) 

0.85 (0.1) Rmax=1.10 0.89 (0.07) 0.87 (0.09) 

Rmax=1.15 0.88 (0.07) 0.86 (0.08) 0.84 (0.1) 

Type 2 error  

𝛽 

 

Rmax=1.05 0.00 (0.00) 0.08 (0.18) 0.16 (0.28) 

Rmax=1.10 0.01 (0.03) 0.07 (0.16) 0.14 (0.26) 

Rmax=1.15 0.01 (0.04) 0.09 (0.18) 0.07 (0.17) 

 437 

  438 

Table 8 reveals that the average Type II error for both interval approaches is below the 439 

threshold of 0.20, demonstrating the proposed method performs well in transformation-440 

disagreeable settings overall. Across all Transformation Disagreeable settings, the mean 441 

(standard deviation) Type II error is 0.072 (0.182) for the z-interval approach. While not 442 

explicitly detailed, the mean (standard deviation) of the Type II error based on bootstrap 443 

confidence intervals is similar, at 0.070 (0.177).   444 

The results highlight an interesting contrast in error fluctuations. Unlike Type I error, which 445 

shows relatively small variability for both Overlap Agreeable (Figure 1) and Transformation 446 
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Agreeable scenarios (std = 0.03, Table 7), the Type II error exhibits low variability in Overlap 447 

Disagreeable scenarios (Figure 1) but high variability in Transformation-Disagreeable scenarios 448 

(std = 0.18, Table 8).  This disparity arises because Transformation Disagreeable scenarios do 449 

not necessarily equate to Overlap Disagreeable. Certain Transformation Disagreeable patterns 450 

can still yield similar overlap-based segmentation performance. For example, the transformation 451 

patterns (Rmax, Smax) = (1.05, 2) and (1.10, 2) produce similar mean (standard deviation) DSC 452 

values of 0.88 (0.09) and 0.87 (0.09), respectively. The inclusion of both Overlap Agreeable and 453 

Overlap Disagreeable cases within the transformation-disagreeable scenario contributes to higher 454 

variability in Type II error.   455 

Table 8 also demonstrates that as the absolute mean DSC difference 𝑑̂𝜇 = 𝜇̂𝐷 − 𝜇̂0  increases, 456 

the mean Type II error approaches 0. This is as expected, as the method is expected to perform 457 

better when the DSC performance difference between the device and the panel becomes more 458 

pronounced. 459 

An analysis of subgroup trends reveals that as the maximum reader shift (Rmax) increases 460 

from 0 to 2 to 3, the mean Type II error rises from 0.01 to 0.08 to 0.13, respectively. This 461 

increase corresponds to a greater uncertainty in DSC performance as well because  higher pixel 462 

shift counts are allowed. In Table 8, the DSC standard deviation increases from 0.04 to 0.09 to 463 

0.13 as Rmax increases from 0 to 2 to 3. This trend suggests that statistical power increases when 464 

expert transformation patterns exhibit less variability. This would be akin to a situation where all 465 

panel members have substantial experience and expertise, resulting is less variation among their 466 

segmentation contours. However, it is important to note that deliberately selecting experts to 467 

ensure near-identical patterns (e.g., all from one institution with identical training) is 468 

inappropriate, as this level of agreement is unrealistic in the broader clinical context. 469 
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To further visualize the method’s performance for individual settings, Figure 4 illustrates the 470 

Type II error for each setting with fixed panel transformation parameters (Rmax, Smax) = (1.10, 2). 471 

Results for other (Rmax, Smax) settings are omitted here and provided instead in Supplementary 472 

Figures S3–S10, as their patterns are similar to the trends shown in Figure 4.  Each subplot in 473 

Figure 4 displays the Type II error of the proposed method when the device adopts a 474 

transformation pattern disagreeable to the panel across different numbers of images and experts.   475 

  476 

Figure 4. Type 2 error by device transformation pattern (𝑅𝑚𝑎𝑥
𝐷 , 𝑆𝑚𝑎𝑥

𝐷 ), given panel transformation (𝑅𝑚𝑎𝑥, 𝑆𝑚𝑎𝑥) =477 
 (1.10, 2), with mean(std) within-panel Dice 0.87(0.09) for Image Simulation Study 2, Scenario II: 478 
Transformation Disagreeable. The black dashed horizontal line marks type 2 error level at 0.2.   479 

Figure 4 shows a decreasing Type II error as sample size or panel size increases. These 480 

trends indicate that increasing the sample size and the panel size (assuming all experts have 481 

similar DSC performance) enhances the power of the proposed method. The results presented in 482 

Figure 4 further corroborate the findings in Table 8, demonstrating that the proposed method 483 
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achieves consistently low Type II error in settings with larger difference in Dice performance, 484 

except in transformation-disagreeable but with smaller difference in the Dice performance. But 485 

even in these challenging cases, increasing the sample size or the number of experts in the panel 486 

effectively reduces the Type II error. Notably, the instances of Type II error exceeding 0.2 in 487 

Figure 4 are unlikely to pose practical concerns, as the DSC performance differences in these 488 

settings are minimal (e.g., as small as 0.01) and are shown to be mitigated to below 0.2 by 489 

increasing the sample size. 490 

4 Application 491 

This section illustrates a real-world example to demonstrate the practical application of the 492 

segmentation interchangeability metric for comparison of an AI segmentation and multiple 493 

human experts.   494 

4.1  Database and Data Preparation 495 

The data are taken from the LIDC-IDRI database 
23

 developed by the Lung Image Database 496 

Consortium. This is one of the largest publicly available datasets for lung nodule detection and 497 

segmentation. It contains data from 1010 patients (1018 studies) and 2660 nodules, with slice 498 

thickness varying from 0.45 mm to 5.0 mm. Each study includes clinical thoracic CT images 499 

accompanied by an XML file documenting the annotations made by four experienced thoracic 500 

radiologists. This dataset is anonymized, and all protected health information (PHI) is removed 501 

23
.   502 

A U-Net segmentation model with a ResNeXt encoder and ImageNet transfer learning was 503 

trained using a subset of LIDC-IDRI data. This U-Net model was then compared to the 504 

segmentation performance of 4 radiologist annotators using a testing dataset based on 124 505 
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independent LIDC-IDRI images. Details of training and testing data preparation as well as model 506 

training are provided in the Appendix A2. 507 

4.2  Results 508 

Figure 5 shows the distribution of DSC values for pairwise annotators. The results suggest the AI 509 

model may not agree with the panel, as evidenced by a lower DSC between the AI model and the 510 

readers compared to the DSC between pairwise readers. However, this visual comparison does 511 

not substantiate a statistical assessment of the difference. 512 

 513 

  Figure 5. Distribution of DSC values for each pair of annotators. 514 

We now apply our proposed statistical testing method to assess the interchangeability of the 515 

AI model and four radiologists in the panel. Table 10 reports the mean (standard deviation) of 516 

within-panel DSC 𝜇̂𝑃(𝜎̂𝑃), the mean (standard deviation) for the AI-panel comparison 𝜇̂𝐴(𝜎̂𝐴),  517 

the difference between the two 𝑑̂ = 𝜇̂𝑃 − 𝜇̂𝐴 and 95% CI derived from bootstrapping and z-518 

interval approaches derived using the proposed method.  519 
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Table 9. Agreement assessment results for the U-Net model (device) and the expert panel on 520 

the LIDC-IDRI test dataset.   521 

Annotator vs. 

Reference Panel 

𝜇̂𝑃 

(𝜎̂𝑃) 
𝜇̂𝐴 

(𝜎̂𝐴) 

𝑑̂ = 𝜇̂𝑃 − 𝜇̂𝐴 

(95% CI)  

bootstrapping 

approach 

𝑑̂ = 𝜇̂𝑃 − 𝜇̂𝐴 

(95% CI) 

z-interval approach 

U-Net vs. 

4 readers 

0.7619 

(0.0937) 

0.6896 

(0.1172) 

0.0723 

(0.0584, 0.087) 

0.0723 

(0.0583, 0.0863) 

  522 

The results in Table 9 indicate that the trained U-Net model vs. 4-reader panel comparison 523 

yields a 95% z-interval CI of (0.0583, 0.0856) (with a similar result from the bootstrapping CI, 524 

as shown in Table 9). This indicates that the U-Net model has significantly lower agreement with 525 

the panel than the within-panel agreement, and thus it is not interchangeable with the reader 526 

panel. We note that the trained AI model presented here is used exclusively for illustrative 527 

purposes, and the results of this specific use case should not be interpreted as evidence that U-528 

Net segmentation models more generally underperform relative to human experts.  529 

5 Discussion  530 

In this work, we developed a segmentation interchangeability metric and statistical method for 531 

evaluating agreement between an AI device and a panel of human experts. Through a statistical 532 

and an image-based simulation studies, we demonstrated that the proposed method exhibits well-533 

controlled Type I error and good Type II error behavior. The novelty of this method lies in its 534 

ability to directly assess the interchangeability of a segmentation AI device with multiple human 535 

experts without requiring a reference standard. This distinguishes our method from the 536 

traditional approach that do require defining reference standard contours. Additionally, setting an 537 

acceptable performance goal with conventional methods is challenging due to the lack of a 538 

widely accepted clinical cutoff for the Dice score. In contrast, our method compares device 539 
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performance directly with an expert panel as a control, eliminating the need for a surrogate 540 

ground truth. Setting a performance goal based on the mean DSC difference is also simpler, as 541 

the target value is typically close to 0. 542 

A limitation of the proposed method is it treats reader effect as fixed. This may not be a 543 

major concern, as treating a small reader panel as fixed is not uncommon. In the context of 544 

multi-reader studies, this approach has been used by Bandos et al. 
25

 and discussed by Hillis and 545 

Schartz 
26

. It would be an interesting future direction to incorporate methods accounting for 546 

truther panel variability to refine our proposed method as an extension. Another limitation of the 547 

method is it is designed to assess differences in overlap-based segmentation performance not 548 

distance-based performance. One can easily substitute other metric into the proposed method, 549 

such as a distance-based metric, but we have not determined how well the method’s assumptions 550 

hold.   551 

The simulation study results indicate that increasing the sample size or the expert panel size 552 

can enhance the power of a study utilizing the proposed method. In practice, it may be 553 

challenging to expand the panel size while maintaining a high within-panel agreement level. As 554 

such, increasing the sample size may be a most practical and feasible approach compared to 555 

enlarging the panel.  556 

 557 

Appendix A  558 

A1 Table. Configuration for Default parameters in Image-based Simulation  559 

transform parameter configuration 

fourier (detail, range, magnitude) 

detail = # of all pixels in original contour  

range = round(detail * 0.2) + 1 

magnitude = 2 
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spike (center, height, width) 

center ~ U[0°, 360°) 

height ~ estimate lesion diameter * U[0.01, 

0.2] (randomly assign ± sign) 

width ~ estimate lesion diameter * U[0.01- 

0.2] / 2 

affine - rotation φ φ ~ U[0°, 360°) 

A2  Training/Testing Data Preparation and Model Training 560 

Based on LIDC-IDRI database, we prepare the final data to be used for method demonstration 561 

using following steps: 562 

1. For each nodule, we draw the central slice from each scan (if there is even number of 563 

slices (say, 2m slices) in a scan, we take (m+1)
th

 slice as the central slice for this scan).   564 

2. From the imaging dataset created in Step 1, we randomly draw a 70% sample (at the 565 

patient level) and use these cases to train an AI segmentation model (a U-net architecture 566 

with ResNeXt Encoder that is pretrained on ImageNet Database) using an IoU metric. 567 

The reference standard mask for the training data, which is required for AI model training 568 

purposes, is created by applying Majority Vote (MV) rule to the 4 radiologists’ manual 569 

annotations. For illustration, the figure below presents an example of the original slice, 570 

alongside annotations from four radiologists, the aggregated consensus derived using the 571 

Majority Vote (MV) criterion, and the annotation extracted by the U-Net algorithm. 572 
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 573 

Figure A1: Radiologists annotations of an LIDC-IDRI lesion along with the majority vote (MV) consensus, and the 574 

contour produced by our U-Net segemantation algorithm. 575 

 576 

3. From the remaining 30% of patients not used in training, we collected cases where the 4 577 

radiologists agreed on the lesion (defined here as having at least a 1 pixel overlap 578 

between annotations from any pair of radiologists in panel). One image per patient is then 579 

randomly chosen to form the final testing dataset, resulting in 124 independent images.  580 

4. Using contours generated by the algorithm and those annotated by the four radiologists 581 

on the testing data, compute paired annotator Dice scores. And then the computed Dice 582 

scores will be fed to the proposed method for annotator vs. reference panel 583 

interchangeability assessment. 584 
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Code, Data, and Materials Availability 614 

The data used in the application section—LIDC-IDRI images—are publicly available at: 615 

https://www.cancerimagingarchive.net/collection/lidc-idri/. The code developed for the proposed method 616 

is available at ######link to be inserted after manuscript clearance######. 617 

Figure Caption List 618 

Figure 1.CP, Type I error and Type II error results for the statistics-based Simulation Study 1.  The figure includes 619 
boxplot results aggregated across all the settings in Scenarios I – IV, and for both the 2-reader and 3-reader 620 
scenarios. 621 

Figure 2. Example of synthetic expert and device contours based on an initial true contour.  Note, this is a 622 
Transformation Disagreeable example where the device contour is based on a different set of MISS parameters 623 
compared to that of the experts.  a) true contour, b)-d) synthetic reader contours, e) Transformation Disagreeable 624 
device contour. 625 

Figure 3. Plots of the Type 1 error results by transformation pattern (Rmax, Smax) for Image Simulation Study 2, 626 
Scenario I: Transformation Agreeable. The black dashed horizontal line marks the expected type 1 error level of 627 
0.05.   628 

Figure 4.Type 2 error by device transformation pattern (𝑅𝑚𝑎𝑥
𝐷 , 𝑆𝑚𝑎𝑥

𝐷 ), given panel transformation (𝑅𝑚𝑎𝑥, 𝑆𝑚𝑎𝑥) =629 
 (1.10, 2), with mean(std) within-panel Dice 0.87(0.09) for image simulation study Scenario II: Transformation 630 
Disagreeable. The black dashed horizontal line marks desirable type 2 error level at 0.2.   631 

Figure 5. Distribution of DSC values for each pair of annotators.  632 

Figure A1: Radiologists annotations of an LIDC-IDRI lesion along with the majority vote (MV) consensus, and the 633 
contour produced by our U-Net segmentation algorithm. 634 

Table Caption List 635 

Table 1: Parameter configuration scenarios for Study 1: statistic-based simulations.   636 

Table 2. Results for all 32 settings in Scenario I: Equal Mean μ and Equal Standard Deviation σ from statistics-based 637 
simulation Study 1. 638 

Table 3. Selected results for 8 Settings with (𝜇0, 𝑑µ, 𝜎0) = (0.85, −0.05, 0.15) in Scenario II: Unequal Mean μ and 639 
Equal Standard Deviation σ from statistics-based Simulation Study 1. 640 

Table 4. Selected results for 24 of 96 Settings with 𝜇0 = 0.75 in Scenario III: Equal Mean μ and Unequal Standard 641 
Deviation σ from statistics-based Simulation Study 1. 642 

Table 5. Selected results for 24 of 648 Settings with (𝜇0, 𝑑µ, 𝜎0 ) = (0.8, −0.05,0.1) in Scenario IV: Unequal Mean 643 
μ and Unequal Standard Deviation σ from statistics-based Simulation Study 1. 644 

Table 6. Configuration for tunable parameters in image-based Simulation Study 2. 645 

https://www.cancerimagingarchive.net/collection/lidc-idri/
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Table 7. Mean (standard deviation) for Within-Panel DSC, Device-Panel DSC, and Type 1 Error by panel 646 
transformation pattern from Image-Simulation Study 2, Scenario I: Transformation Agreeable. 647 

Table 8. Mean (standard deviation) of Within-Panel DSC, Device-Panel DSC, and Type 2 Error by Panel 648 
Transformation Pattern, Image-Simulation Study 2, Scenario II: Transformation Disagreeable. 649 

Table 9. Agreement assessment results for the U-Net model (device) and the expert panel using the LIDC-IDRI test 650 
dataset.   651 
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