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Abstract—Synthesis of segmentation contours is useful in eval-
uating truthing methods, i.e., the establishment of a segmentation
reference standard by combining multiple segmentation results
(e.g., by multiple experts). In contrast to a real-world application
where the ground truth is often not available, the ground truth of
objects is defined in synthetic data. Contours with combinations
of segmentation errors, as compared to the defined ground
truth, can be synthesized. A desired property of segmentation
contour synthesis for evaluating truthing methods, which we
call the restorability property, is that the average of multiple
segmentation contours can converge to the truth contour. This
property is desired because such a dataset can serve as a
benchmark for evaluating if commonly used truthing methods
have bias. We developed a segmentation contour synthesis tool
that has the restorability property and conducted simulation
studies to validate this tool.

Index Terms—synthetic segmentation, segmentation synthesis,
medical image segmentation, restorable segmentation, restorabil-
ity

I. INTRODUCTION

Medical image segmentation is commonly employed to
determine the boundaries of anatomical structures in medical
images, such as organs or lesions. This technique has numer-
ous clinical uses, including extracting features for diagnos-
tic purposes, designing treatment plans in radiation therapy,
and tracking tumor growth in response to treatment, among
others. Despite the rapid development of advanced artificial
intelligence and machine learning (AI/ML) algorithms for
medical image segmentation [1], there is a lack of consensus
on evaluation methods for image segmentation. Many metrics
for evaluating segmentation performance have been proposed
in the literature and guidelines are needed for selecting the
most appropriate metrics for a particular clinical task [2],
[3]. There are many truthing methods, i.e., the establishment
of a segmentation reference standard usually by combining
multiple segmentation results (e.g., by multiple experts) [4],

[5], and the assessment and comparison of these truthing
methods need more research.

The ground truth segmentation of medical images is useful
for investigating the characteristics of performance metrics,
guiding the choice of metrics, comparing and aiding the
selection of truthing methods. However, the ground truth is not
available for real-world images, but can be defined in synthetic
data. Prior efforts [3], [6] have utilized simple geometric
contours such as circles in synthetic data and have been shown
to be effective in demonstrating certain characteristics of per-
formance metrics. However, simulation of simple contours do
not capture the complexity and variability in anatomical struc-
tures like organs and lesions. The use of manually adjusted
segmentations is often cost prohibitive. While synthesizing
segmentation contours using deep learning techniques appears
to be an alternative solution, it would need large amount of
training data and it can be difficult to generate contours with
specific type of segmentation errors. Hence, the aim of this
study is to devise a tool that generates synthetic segmentation
derived from anatomies identified in actual medical images
with known reference boundaries. The goal of this tool is to aid
in the evaluation of AI/ML segmentation metrics in medical
imaging.

Our previous works developed a Medical Image Segmen-
tation Synthesis tool (MISS-tool) [7] to generate synthetic
segmentation contours with defined truth masks based on
objects in real-world medical images. The MISS-tool allows
users to customize segmentation errors by configurable param-
eters. Emulated segmentation by using MISS-tool are used
to inform the selection of performance metrics for medical
image segmentation evaluation [8]. The synthetic segmentation
contours are generated from truth masks by setting specified
parameters to simulate certain types of segmentation errors.
For one truth mask, tool parameters can be varied to create an
arbitrary number of synthetic segmentation contours; however,
the average of those contours are not guaranteed to converge
to the truth contour.
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evaluating truthing methods is that the average of multiple
segmentation contours do converge to the truth contour. This
property is desired because such a dataset can serve as a
benchmark for evaluating if commonly used truthing methods
have bias, i.e., the reference standard for a truthing method
is systematically over- or under-segmentation of the truth.
Therefore, in this paper, we proposed a method that generates
restorable synthetic segmentation contours that converge to the
truth contour.

II. METHOD

The principle idea of our approach follows the law of large
numbers which describes that the average of observations
of a Gaussian random variable converges to its mean. For
example, if we synthesize (simulate) measurements of the
largest diameter of a lesion, we can set the truth of diameter
as µ and synthesize the i-th measurement as li = µ+ϵ, where
ϵ ∼ N (0, σ2) is zero mean Gaussian noise. The average of li
converges to the truth µ. However, the synthesis of contours
analogous to this simple idea is not trivial. We show below
that our approach can restore the polygon approximation of
the truth contour using synthesize contours.

A. Restorable synthesis

We represent the truth contour in a 2D digital image
with the Cartesian coordinates of N points on the contour
Pi(xi, yi), i = 1, 2, .., N . We first consider adding Gaussian
noise to the coordinates of one point. For a point P1(x1, y1),
it is adjusted to a new location P 1

1 (x1 + ϵ1, y1 + ϵ2) after
adding Gaussian noise of zero mean: ϵ1, ϵ2 ∼ N (0, σ2

i ).
The zero mean of the Gaussian distribution ensures that the
expectation of new coordinates is the original coordinate. Ob-
viously, the location of P 1

1 follows a 2-D Gaussian distribution
with a mean at the original location P1. We consider an
image (I1) containing one-pixel object with value of 1 and
background pixels’ value of 0. We generate n synthetic images
(I11 , I

2
1 , I

3
1 , · · · In1 ) by adding Gaussian noise to the coordinates

of that pixel point (Figure 1 upper left). In the average image of
the n synthetic images ( 1

n

∑
i I

i
1), the pixel with the maximum

value is expected to be located at the location of the point
object in the original image (I1). Figure 1 illustrates that
the original location of the point object is the most probable
location for the point object in the synthetic images and the
maximum value of the average image is located in the original
point.

If we add Gaussian noise to the locations of all points on a
contour, it may break the contour into unconnected pieces. To
overcome this issue, we select some key points based on a rule
on the contour and connect them into a polygon approximation
of the ground truth contour. We then synthesize segmentation
contours by adding Gaussian noise to the locations of the key
points, and then reconnect them using straight lines. To avoid
the crossing of lines in the synthesized contour, the moving
distance of the key points (which is controlled by the σ of the
Gaussian noise) needs to be restricted.
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Fig. 1: Synthesis of images with a point object. Upper left
shows the original and synthesized images. Lower left shows
the probability distribution for the location of the point object
in the synthetic images. The plot on the right shows the
average image with the expected point indicated with an arrow.

In summary, our method to generate synthetic segmentation
is:

1) Select key points on the original contour (Figure 2-1).
2) The polygon approximation of the truth mask is created

by connecting the selected key points using straight lines
and filling the closed area (Figure 2-2)

3) Add Gaussian noise to the coordinates of the key points
with limited σt (Figure 2-3)

4) The synthetic segmentation is generated by connecting
the modified key points using straight lines and filling
the closed area (Figure 2-4)
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Fig. 2: Illustration of our method to synthesize segmentation
contours that converge to a polygon approximation of the
original truth contour.We only show a part of the contour; all
shapes are closed in real cases. (1) Truth mask with selected
key points; (2) Polygon approximation; (3) Adding Gaussian
noise to the key points. The green circles show the probable
locations of each key point, which is define here as 3σt; (4)
Synthetic segmentation contour.

B. Restoration of polygon

An important property of the contour synthesis method as
described above is that the average of the synthesized contours
asymptotically converge to the polygon approximation. Specif-
ically, we represent the synthesized segmentation contour as a
binary mask with pixel value of 1 for the object and 0 for the
background. Then applying a threshold of 0.5 on the the aver-
age of infinite number of such images would be the polygon
contour. This is shown in Figure 3. Note that the maximum
value on the average image is 1, but unlike the single-point
image situation where the maximum value corresponding to
the original truth location, a threshold of 0.5 must be used to



converge to the polygon contour. This is because any (pixel)
point on the polygon contour has 0.5 probability of being
included/excluded by the synthetic segmentation. The value of
the pixel inside the synthetic segmentation is 1, and outside
the synthetic segmentation is 0. Hence, the expectation of the
value of a pixel in the polygon contour should be equal to or
greater than 1×0.5+0×0.5 = 0.5. That explains why pixels
on the boundary of the polygon contour has value of 0.5 in
the average image of synthetic segmentation masks.

III. EXPERIMENT AND RESULT

The critical characteristic of our proposed method is that
averaging the synthetic segmentation contours generated from
a defined polygon contour can approximately reproduce the
polygon contour. As mentioned in the Introduction section,
this would provide a benchmark dataset for evaluating truthing
methods. Thus, in the experiments, we investigate how well
the polygon contour can be restored by averaging the synthetic
contours. We also investigated the diversity of synthetic seg-
mentation contours because the method controls the amount of
variation to avoid crossing of the polygon sides. In this work,
we used the Dice index [9] as a segmentation performance
metric.

In the Method Section II-A, we summarized the major
steps of our method to generate synthetic segmentations. Here,
we describe the methods for key points selection on the
original contour to generate a polygon approximation and for
specifying the extent of the Gaussian noise (the σi parameter)
for each key point.

A. Parameter selection

In this study, the key points (i.e., the vertices of the polygon)
are selected sequentially on the contour of interest by a
constant interval. Specifically, the gap between two key points
has the same number of pixels on the contour with the gap
between the first and last selected key points potentially being
different from others. Thus, the number of key points (k)
depends on the interval/gap (g) and total number of pixels on
the contour (N ); that is: k = [N/g]+1. The minimum number
of key points is three to define a polygon. This requires the
gap: g ≤ ⌊(N −1)/2⌋. A large gap value is not recommended
because it may render the polygon to be far off the original
contour.

The σt parameter that defines the Gaussian noise to be
added to the locations of the key points (i.e., polygon vertices)
depends on the Euclidean distance between two key points. For
a key point Pt, its two neighboring key points are Pt−1 and
Pt+1. The Gaussian noise added to Pt is:

σt =
w

3
⌊min{d(Pt−1, Pt), d(Pt, Pt+1)}⌋

where w ∈ [0, 1] is the weight of σ and d is the distance in
pixels along the contour. Dividing by 3 is because the radius
of the point changing area is about 3σt (covering 99.7% of
the Gaussian distribution).

The extent of variation of the polygon vertices to generate
a synthetic segmentation is determined by the values of gap

(g) and weight (w). Since the gap is set to be identical for a
contour, the larger gap allows for larger σt values. We vary
the w parameter between 0 and 1.

B. Materials

In this preliminary study, the original contour (the blue
contour in Figure 3A) is a lung nodule segmentation from the
LIDC-IDRI dataset [10], which consists of diagnostic and lung
cancer screening thoracic computed tomography (CT) scans
with radiologist-annotated lesions.
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Fig. 3: Synthetic segmentation contours from a lung nodule
segmentation and the convergence to the polygon approxima-
tion. In (A), the blue contour is the lung nodule segmentation
by a radiologist, and the red contour is the polygon approxi-
mation. (B) shows four examples of synthetic segmentations
generated from the polygon mask. (C) is the average image
through 1000 synthetic segmentations. The red contour in (C)
is a close aprpximation of the same as the polygon contour in
A, which is identified with pixel value threshold of 0.5.

C. Restorability

The first experiment is to show the restorability, i.e., the
ability to reproduce the initial polygon contour by averaging
the synthetic segmentation masks. From the lung nodule mask,
we created a polygon approximation by using the gap: g = 20.
Since the contour of the lung nodule contains 500 pixels, 25
key points were selected as the polygon vertices (red star-
marks in Figure 3A). We then used the weight w = 1 and
generated five groups of synthetic segmentations including 1k
(1000), 2k, 3k, 5k, and 10k images respectively (Figure 3B).

As shown in the fourth column of Table I, the Dice indexes
between the average of the synthetic masks and the initial
polygon mask are greater than 99.5% for all groups. Figure 3C
shows the result for group 1 with 1k synthetic masks. Other
columns of Table I show that the mean of Dice indexes be-
tween synthetic segmentations and the initial polygon mask is
stable when the number of generated synthetic segmentations
is over 1000.

D. Variability

It is important that the synthetic segmentations have certain
level of variability to mimic the real-world situations. Here
we examine how the two parameters gap (g) and weight (w)
affect the synthetic contour’s variability. We generated eight
groups of synthetic segmentation by setting g = 20, 10 and
w = 1.0, 0.8, 0.5, 0.3. Each group includes 1000 images.



TABLE I: The second column is the mean of Dice indexes
for comparing synthetic segmentation masks with the initial
polygon mask. The third column is the standard deviation (std)
of these Dice indexes. The fourth column is the Dice indexes
between the initial polygon mask and the reproduced mask by
averaging synthetic segmentations.

# Dice%(mean) Dice%(std) Dice%(Restored)
1k 94.5376 0.8733 99.5840
2k 94.5086 0.9150 99.6461
3k 94.5202 0.8886 99.6542
5k 94.5171 0.8894 99.6583
10k 94.5154 0.8992 99.6624
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Fig. 4: Dice between the initial polygon mask and synthetic
segmentations generated by different gap (g) and weight (w)
parameters. The top and bottom of the bars are the maximum
and minimum of Dice indexes to show the range of Dice
indexes through 1000 synthetic segmentations.

Figure 4 shows that a larger gap (g) results in a lower
mean Dice and a greater range (variability) of synthetic
segmentations. And weight (w) can also control the variability.
Specifically, a smaller weight results in a higher mean Dice
and a narrower range (variability) of synthetic segmentations.
Thus, the variability of generated synthetic segmentation is
managed by these two parameters for a given mask.

IV. DISCUSSION

One limitation of our method is that we set the gap param-
eter as a constant for a given case when creating the polygon
approximation of an object contour in a medical image. Our
future work will include investigating an alternate approach
by setting the gap parameter to be adaptive to the spatial
frequency of the contour, i.e., a larger gap value for a flat
portion of the contour and a smaller one for a sharp corner.

To evaluate truthing methods, we can apply selected truthing
methods to a set of restorable synthetic segmentations gener-
ated from the polygon approximation of a truth mask, then
compare fusion results from truthing methods with the polygon
approximation. The better performing truthing method should
yield an estimate of the truth segmentation that has higher
accuracy (e.g., greater Dice score) as assessed by the polygon
approximation and/or use fewer segmentations to reach that
accuracy. Another approach in a future work could be appli-
cation of image-to-image models like CycleGAN to transform

the synthetic masks to nodule images as an augmentation for
training models with better generalizability.

V. CONCLUSIONS

In this paper, we proposed a method that can generate
synthetic segmentation contours from an initial polygon mask,
which approximates the actual object contour in a medi-
cal image, with the property that averaging these synthetic
segmentations can restore the polygon approximation. Using
the Dice index, we verified that the synthetic segmentations
generated using our approach converge to the polygon mask.
We also showed that he synthesis can generate certain amount
of variability in the synthetic segmentation contours. This
approach can allow for the creation of a benchmark dataset that
includes synthetic segmentation contours with the property
that their average converges to the polygon truth mask. Such
a dataset would be useful for evaluating truthing methods in
medical image segmentation.
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