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ABSTRACT

Segmentation of medical images with known ground truth is useful for investigating properties of performance
metrics and comparing different approaches of combining multiple manual segmentations to establish a refer-
ence standard, thereby informing selection of performance metrics and truthing methods. For medical images,
however, segmentation ground truth is typically not available. One way of synthesizing segmentation errors is
to use regular geometric objects as ground truth, but they lack the complexity and variability of real anatom-
ical objects. To address this problem, we developed a medical image segmentation synthesis (MISS)-tool. The
MISS-tool emulates segmentations by adjusting truth masks of anatomical objects extracted from real medical
images. We categorized six types of segmentation errors and developed contour transformation tools with a set
of user-adjustable parameters to modify the defined truth contours to emulate different types of segmentation
errors, thereby generating synthetic segmentations. In a simulation study, we synthesized multiple segmentations
to emulate algorithms or observers with pre-defined sets of segmentation errors (e.g., under/over-segmentation)
using 220 lung nodule cases from the LIDC lung computed tomography dataset. We verified that the synthetic
segmentation results manifest the type of errors that are consistent with our pre-configured setting. Our tool is
useful for synthesizing a range of segmentation errors within a clinical segmentation task.

Keywords: Medical Image Segmentation Synthesis, Manual Segmentation Emulation, Segmentation Evaluation,
Segmentation Errors

1. INTRODUCTION

Medical image segmentation is widely used to identify the extent of anatomical objects in medical images (e.g.,
organs or lesions) for a variety of clinical applications, such as feature extraction for diagnosis, radiation treat-
ment planning, monitoring tumor size in response to treatment, and so on. Although cutting-edge artificial
intelligence/machine learning (AI/ML) algorithms are being developed at an ever-increasing pace for medical
image segmentation,1 there is a lack of consensus and standardized assessment methodologies for image segmen-
tation. For example, there are many segmentation performance metrics, but there is no consensus on methods
for choosing performance metrics that are most suitable for a specific clinical task.2,3 Moreover, there is no
consensus in the approach of establishing a reference standard based on manual segmentation.4,5

Segmentation of medical images with known ground truth is useful to investigate properties of performance
metrics, thereby informing metric selection, and to investigate different approaches of combining multiple manual
segmentations to establishing a reference standard, thereby informing truthing method selection. However,
identifying the true extent of an object’s boundary in real images is difficult. That causes the establishment of
the ground truth for segmentation tasks a challenging process.. The use of regular geometric shapes can be useful
in illustrating certain properties of performance metrics;3,6 however, they lack the complexity and variability
of biological characteristics (e.g., organs and lesions). Using manual segmentations or manually manipulated
segmentations is usually difficult due to the high cost of acquisition or the limited number of segmentations. An
alternate solution, is to exploit deep learning models to generate various segmentation errors, however, this could
be difficult in systematically controlling the type and extend of segmentation errors needed for a specific clinical



task. The purpose of this work is to develop a tool capable of creating synthetic segmentations based on organ
or lesion contours extracted from real medical images, which we call the Medical Image Segmentation Synthesis
tool (MISS-tool). The MISS-tool allows users to customize segmentation errors by adjustable parameters.

2. METHODS

According to the study by Taha et al.3 and our observation of the LIDC-IDRI dataset,7 we summarized six
types of segmentation errors. We further developed methods to synthesize these errors based on pre-defined
truth contours. Figure 1 shows illustrations of these segmentation errors.
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Figure 1. Overview of segmentation errors and their emulation methods. Contours in black color are the truth segmenta-
tion, and contours in red color are synthetic segmentations with various errors. (1) satellite structure; the image contains
small disconnected components outside/inside the main segmentation. (2) boundary spiculation error; the spike-like shape
is added or removed from the segmentation. (3) under- or over-size error. (4) location error. (5) lack of overlap. (6)
boundary detail error.

To generate synthetic segmentations using our MISS-tool, one must first define truth masks or contours of
the objects of interest, e.g., lesions, organs at risk, etc.. This can be achieved by manual segmentation of those
objects from medical images by an expert. If multiple manual segmentations for each object are available (e.g.,
by a panel of experts), they can be combined into one truth mask using some truthing methods such as the
Simultaneous Truth And Performance Level Estimation (STAPLE).4 Note that the ”truth” mask here is only
for the purpose of segmentation synthesis serving as reference for the synthesized segmentation errors. Then for
each object, one can emulate segmentations with different types of segmentation errors as shown in Figure 1,
using a combination of four methods (Figure 2):



• Affine transformation (Sec. 2.1): resizing, shifting, rotate, etc.

• Add satellite structures (Sec. 2.2): relatively small areas disconnected from the main segmentation

• Add spiculation (Sec. 2.3): adjust contours in the polar coordinate system

• Fourier Descriptor (Sec. 2.4): add, remove, or change components in the spatial frequency domain

Medical Images Object Slices Truth Masks

Affine Trans-
formation

Add Satellite
Structures
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Contour Changes
by Fourier
Descriptor

Synthetic Segmen-
tation Contours

Figure 2. Flowchart of synthetic medical image segmentation generation

2.1 Affine Transformation

The segmentation contours can be modified by an affine transformation. As shown in Figure 3, the MISS-tool
provides three types of affine transformations: resizing (changing the height and width ratio), shifting, and
rotation. Resizing has two parameters: 1) the ratio of height Ry and 2) the ratio of width Rx; a ratio equal
to 1 means no change. Shifting has two parameters for 2-D images characterizing the location change in (x, y)
coordinates. The rotation has one angle parameter φ.
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Figure 3. Affine transformation to modify the segmentation contour (in red). h and w are the height and width of the
bounding box of the contour.

2.2 Satellite Structure Synthesis

Satellite structure is a type of segmentation error that a separate object (typically small) in the nearby region
of the true object is segmented as part of the segmentation result.

The approach we used, as shown in Figure 1(1), is to extract satellite structures from the real dataset (e.g.,
the LIDC-IDRI dataset as our use-case application) to create a library of satellite structures based on the manual
segmentation reference. To emulate the satellite structure error, we randomly select an object from the library
dataset and add it at a location nearby the truth mask with or without some affine transformation (Figure 4
right). As shown in Figure 4 left, the location of the satellite structure is determined by four parameters: a
range of distance (a, b) between the center of the main segmentation and the center of the satellite and a range
of angles (r, s). By definition, a and b must be greater than the sum radius of the main segmentation and the
satellite structure to avoid overlapping. Finally, the satellite structure is added to a location randomly chosen
in the user-specified region.
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Figure 4. Left: a satellite structure (red) is randomly put aside the main segmentation (black) on the locations (dot
area) defined by a range of distances (a, b) and a range of angles (r, s) from the main segmentation. Right: a real example
of synthesizing satellite structures for Figure 1(1): to add the satellite structure on a truth segmentation image (positive
condition).

2.3 Spiculations

In the polar coordinate system, the segmentation contour can be represented by the distances (ρ) and angles (φ)
between its center of mass and points on the contour. As shown in Figure 5, point i on the contour is (ρi, φi)
in polar coordinates. The contour can be represented by the center-to-contour distance as a function of the
angle: ρ(φ). The contour can be modified by changing the value of distance in a polar coordinate system. The
MISS-tool uses a Gaussian function (Equation 1) to modify the truth contour to emulate boundary spiculation
errors:

G(φ) = he−(φ−c
w )2 (1)
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Figure 5. Emulation of spiculation using the polar coordinate system representation of the segmentation contour.

This emulation has three tunable parameters to set the center (c), height (h), and width (w) of each spic-
ulation. The height can be a positive or negative value to synthesize convex or concave speculation, as shown
in Figure 1(2). The center and width are angle degrees ranging in [0, 2π], and as shown in Figure 5, the real
width of the spiculation (Gaussian function) is about four times the width value (w). The contour after adding
a spiculation is:

ρ′(φ) = ρ(φ) +G(φ)

Figure 6 shows four examples of emulated spiculation errors. Multiple instances of spiculation error can be
emulated for a truth contour.
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Figure 6. Examples of spiculation error, where emulated boundary spiculation are highlighted by red circles. The three
parameters under each emulation from left to right are the center (c), height (h), and width (w). The unit is the pixel.
The height can be a positive or negative value to synthesize convex or concave spiculation.

2.4 Fourier Descriptor

Similar to adding spiculations, each pixel point k on the contour (xk, yk) in the Cartesian coordinate system can
be written as a complex number:

p(k) = xk + yki,

where k = 0, 1, 2, · · · , N − 1, and N is the number of points (pixels) on the contour. By using Discrete Fourier
Transform (DFT):

f(u) =
1

N

N−1∑
k=0

p(k)e−i 2π
N uk,

where f(u) is a Fourier descriptor (FD) of the contour, and u = 0, 1, 2, · · · , N − 1. The complex number of real
point p(k) can be retrieved from the FD by applying inverse-DFT:

p(k)
DFT

GGGGGGGGGBFGGGGGGGGG

i-DFT
f(u)

The contour can be modified if we change FDs before applying inverse-DFT. FDs describe the contour in
the spatial frequency domain, ranging from low frequency (including the DC component) to high frequency. In
emulating segmentation errors, the MISS-tool keeps low-frequency FDs (including the DC component) of the
truth contour and allows the user to change middle-frequency FDs and remove some high-frequency FDs. This
assumes a reasonable segmentation would keep the basic shape of the truth contour but may have errors in some
details. This is achieved by tuning three parameters regarding thresholds of frequencies and the magnitude of
changes.

Figure 7 shows an example of Fourier descriptors from a contour. Each descriptor f(u) is a complex number:

f(u) = αu + βui. (2)

The plot in Figure 7 displays their magnitude:

|f(u)| = |αu + βui| =
√
α2
u + β2

u

FDs describe the components of contour in the frequency domain, and the contour can be modified by change
FDs before applying inverse-DFT. Equation 2 shows an FD f(u) has two coefficients: the real part αu and the
imaginary part βu. Changing the values of αu and βu will affect the FD and its magnitude |f(u)|.

In our MISS tool, there are three adjustable parameters that can be tuned to generate a segmentation contour
from the truth contour. As shown in Figure 7, the first parameter is Detail, which is the number of non-zero
FDs, and the high-frequency FDs beyond those are removed (red areas in Figure 7). The second parameter
is Range, which determines the range of FDs for modifications (blue areas in Figure 7). The bandwidth with
frequencies smaller than Range is not changed (black area in Figure 7). The third parameter is Magnitude for



𝑝 𝑘
Contour
𝑥𝑘 , 𝑦𝑘

DFT

𝑓(𝑢)

Low Freq.

𝒇 𝒖 = 𝟎 𝒇 𝒖 = 𝟎Keep

Detail

Range

High Freq. High Freq.

Figure 7. An example of converting the contour to Fourier descriptors. The plot displays the magnitude of Fourier
descriptors re-ordered by frequency. The Direct Current (DC)-term: f(0) is in the center; from center to the left
and right are low-frequency components to high-frequency components, which are f(n − 1), f(N − 2), · · · , f(N/2) and
f(1), f(2), · · · , f(N/2).

controlling how the FDs in the middle range are modified. Specifically, the real part αu and imaginary part βu

are changed by: {
α′
u = αu + rum

β′
u = βu + sum

,

where updated f ′(u) = α′
u + β′

ui; ru, su ∈ (−0.5, 0.5) are two random variables; m is the Magnitude parameter.
Obviously, m = 0 means no change to the Range FDs. Figure 8 shows four examples of shape and alignment
changes to segmentations by processing FD.

3. RESULTS

We developed the MISS-tool in MATLAB to generate synthetic segmentations by modifying pre-defined truth
contours as explained in the methods section. Examples are shown in Figure 9. To synthesize a segmentation
contour from a pre-defined truth contour, one can use a single method or a combination of these methods (one
method can be repeatedly applied with different parameters). The MISS-tool defines the basic parameters to
modify the segmentation for each method, and the combination of methods provides a great amount of flexibility
and variability for medical image segmentation synthesis. We also provided a graphical user interface (GUI) for
tuning the parameters of these methods, as shown in Figure 10.
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Figure 8. Examples of segmentation changes by processing FD. The three parameters from left to right are Detail,
Range, and Magnitude, which are defined in the Method section.
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Figure 9. First figure from the left is the truth mask of a lung nodule from the LIDC-IDRI dataset; others are results of
MISS-tool – from left to right: results of affine transformation, satellite structure synthesis, adding boundary spiculation,
Fourier descriptor, and combinations of some of the four methods. The right hand-side figures shown with the blue color
highlight the truth segmentation and the synthetic segmentation shown with green contours.

To verify that the MISS-tool can generate synthetic segmentations with pre-specified segmentation errors, we
synthesized multiple segmentations with pre-defined sets of segmentation errors (e.g., under/over-segmentation)
on 220 independent lung nodule cases from the LIDC-IDRI dataset.7,8 We used the central slice image from
each nodule based on radiologist annotations. To define a truth mask, segmentation of lung nodules by multiple
radiologists were combined using the STAPLE method.4,5 We applied affine transformation (Sec. 2.1), which
involved parameters for resizing and shifting. We tuned these parameters on 20 cases (development set) towards
the pre-set segmentation errors and applied the transformations to 200 independent cases (independent test set).
The goal here is to emulate over or under-segmentation (size change from -30% to +30%) by setting resizing
parameters (the ratio of height Ry and width Rx) and shifting their locations (0 or 10 pixels) using the shifting
parameters (x, y).

We quantified the segmentation accuracy of the synthetic segmentations using the size-change ratio and
Intersection over Union (IoU). The size-change ratio is:

Size-change ratio =
Schange

Struth
,

where Struth is the number of total pixels of the pre-defined truth mask, and Sseg is the number of total pixels
of the synthetic segmentation. The IoU (Jaccard index)9 of two segmentation masks A and B is:

IoU(A,B) =
|A ∩B|
|A ∪B|

.

To examine the potential training effect, we computed these metrics on both the development dataset and the
independent test dataset.

Table 1 shows results from this preliminary verification experiment. The results verified that the synthetic
segmentation results have the types and amount of errors that are consistent with the pre-set goals. The training
effect of tuning the parameters appears to be small. This experiment is preliminary as it only tested tuning a
subset of the tunable parameters available in the MISS-tool. Additional experiments are needed to further verify
the full MISS tool.



Figure 10. GUI of the MISS-tool for generating synthetic segmentations. The main window (upper-left) provides the
segmentation evaluation results of 24 metric to quantify the accuracy of synthetic segmentation. The truth mask is shown
in the blue area, and the green contour shows the synthesized segmentation.

Table 1. Verification of achieving pre-specified goals on segmentation errors by tuning MISS-tool parameters. For resizing
Ry = Rx, and for shifting x = y. Dev 20 and Val 200: results from the development set of 20 cases and validation set of
200 cases. The results of the size-change ratio and IoU are averaged through cases in the development set and validation
set respectively. Abs diff: the absolute difference between the two metric values computed on the development and
validation datasets.

Goals
Changes mean Size-change ratio mean IoU

Resize Shift Dev 20 Val 200 Abs diff Dev 20 Val 200 Abs diff
+30% 1.16 0 1.299 1.293 0.006 0.764 0.766 0.003
+10% 1.07 0 1.105 1.101 0.004 0.894 0.894 0.000
-10% 0.97 0 0.898 0.897 0.000 0.896 0.896 0.001
-30% 0.86 0 0.703 0.695 0.007 0.700 0.694 0.006
+30% 1.16 10 1.299 1.293 0.006 0.606 0.594 0.012
+10% 1.07 10 1.105 1.101 0.004 0.637 0.617 0.019
-10% 0.97 10 0.898 0.897 0.000 0.618 0.598 0.020
-30% 0.86 10 0.703 0.695 0.008 0.566 0.546 0.020

4. CONCLUSION

We developed the Medical Image Segmentation Synthesis (MISS) tool to generate synthetic segmentations with
various segmentation errors based on pre-defined ground truth masks extracted from real images. The MISS-tool
emulates a variety of segmentation errors with a set of user-adjustable parameters. In a preliminary verifica-
tion study, we synthesized multiple segmentations to emulate algorithms or observers with a pre-defined set
of segmentation errors on lung nodule cases from the LIDC-IDRI dataset. This tool is useful for synthesizing
segmentations with a range of segmentation errors that are realistic within a clinical task.

The MISS-tool can potentially be used in several ways in the development of assessment methodologies for



medical image segmentation. Synthetic segmentation can be used to investigate the properties of performance
metrics, thereby informing the choice of metrics. The use of regular-shape objects, as found in the current
literature, lacks the variability and complexity of the real anatomies and segregation errors found in actual
medical images. The MISS-tool can also be used to simulate manual segmentations by multiple observers, which
can be used to investigate methods for defining a reference standard from manual segmentations. Moreover, it
can be used to investigate the impact of segmentation errors on radiomic features of lesions or dosimetric of
organs at risk in a simulated radiation treatment plan.
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