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ABSTRACT  

In the U.S., breast cancer is diagnosed in about 12% of women during their lifetime and it is the second leading reason for 

women’s death. Since early diagnosis could improve treatment outcomes and longer survival times for breast cancer 

patients, it is significant to develop breast cancer detection techniques. The Convolutional Neural Network (CNN) can 

extract features from images automatically and then perform classification. To train the CNN from scratch, however, 

requires a large number of labeled images, which is infeasible for some kinds of medical image data such as mammographic 

tumor images. In this paper, we proposed two solutions to the lack of training images. 1)To generate synthetic 

mammographic images for training by the Generative Adversarial Network (GAN). Adding GAN generated images made 

to train CNN from scratch successful and adding more GAN images improved CNN’s validation accuracy to at most (best) 

98.85%. 2)To apply transfer learning in CNN. We used the pre-trained VGG-16 model to extract features from input 

mammograms and used these features to train a Neural Network (NN)-classifier. The stable average validation accuracy 

converged at about 91.48% for classifying abnormal vs. normal cases in the DDSM database. Then, we combined the two 

deep-learning based technologies together. That is to apply GAN for image augmentation and transfer learning in CNN 

for breast cancer detection. To the training set including real and GAN augmented images, although transfer learning 

model did not perform better than the CNN, the speed of training transfer learning model was about 10 times faster than 

CNN training. Adding GAN images can help training avoid over-fitting and image augmentation by GAN is necessary to 

train CNN classifiers from scratch. On the other hand, transfer learning is necessary to be applied for training on pure real 

images. To apply GAN to augment training images for training CNN classifier obtained the best classification performance. 
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1. INTRODUCTION

Breast cancer is the second leading cause of death among U.S women and will be diagnosed in about 12% of them 1,2. The 

commonly used mammographic detection based on computer-aided detection (CAD) methods can improve treatment 

outcomes for breast cancer and increase survival times for the patients 3. These traditional CAD tools, however, have a 

variety of drawbacks because they rely on manually designed features. For example, hand-crafted features tend to be 

domain-specific, and the process of feature design can be tedious, difficult, and non-generalizable 4. In recent years, 

developments in machine learning have provided alternative methods for feature extraction; one is to learn features from 

whole images directly through a Convolutional Neural Network (CNN) 5,6. Usually, training the CNN from scratch requires 

a large number of labeled images 7; for example, the AlexNet (a classical CNN model) was trained by using about 1.2 

million labeled images 8. For some kinds of medical image data such as mammographic tumor images, however, to obtain 

a sufficient number of images to train a CNN classifier is difficult because the true positives are scarce in the datasets and 

expert labeling is expensive 9.  

The shortcomings of an insufficient number of images to train a classifier are well-known 8,10, so it is worthwhile to apply 

image augmentation to create new training images and thus to improve the performance of a CNN classifier. Like CNN, 

the Generative Adversarial Network (GAN) is a state-of-the-art neural network-based learning technique in the field of 

deep learning 11 introduced by Goodfellow et al. in 2014 12. Many novel applications in the field of image processing has 

been provided via GAN, for example, image translation 13,14, object detection 15, super-resolution 16 and image blending 17. 

Also for the medical imaging, various GAN are also developed recently such as GANCS 18 for MRI reconstruction, SegAN 
19, DI2IN 20 and SCAN 21 for medical image segmentation. An image augmentation method is to generate synthetic images 

by the features extracted from original images. These generated images are not exactly like the original ones but could 



keep the essential features, structures or patterns of the objects in original images. Therefore, GAN is a good candidate as 

such image augmentation method for augmenting the training dataset. We name the original images ORG images and the 

augmented images generated from GAN GAN images in the rest of this paper. 

Another solution to deal with the lack of training images is to reuse a pre-trained CNN model that has been trained with 

very large image datasets from other fields as the feature extractor and re-train (fine-tune) such a model using a limited 

number of labeled medical images 22. This approach is also called transfer learning, which has been successfully applied 

to various computer vision questions 23–25. In fact, some results of transfer learning are counterintuitive: previous studies 

for the pulmonary embolism and melanocytic lesion detection 22,26 show that the features (connection weights in the CNN) 

learned from natural images could be transferred to medical images, even if the target images greatly differ from the pre-

trained source images. 

Previous studies have applied various machine learning methods for breast cancer/tumor detection using mammograms 27. 

The Digital Database for Screening Mammography (DDSM) 28 are the most commonly used public mammogram 

databases. Some studies used the traditional automatic feature extraction (not manual extraction) techniques, such as Gabor 

filter, fractional Fourier transform and Gray Level Co-Occurrence Matrix (GLCM), to obtain features and then applied 

SVM or other classifier to do classification 29–33. Neural networks were also used as classifiers 34,35. And some studies 

applied CNN to generate features from mammographic images 36–39. Some of these studies used pre-trained CNN as 

applications of transfer learning.  In our study, we have tested both GAN for image augmentation and transfer learning to 

improve the performance of CNN classifier to breast cancer detection in mammograms. Specifically, we tested three 

training strategies on DDSM: 1) trained a CNN from scratch; 2) applied the pre-trained VGG-16 model 40 to extract features 

from input images and used these features to train a Neural Network (NN)-classifier; 3) added GAN images in training set 

and repeated experiments in (1) and (2). 

2. MATERIALS AND METHODS

2.1  The Mammogram Databases and Image Pre-processing 

Mammography is the process of using low-energy X-rays to examine the human breast for diagnosis and screening. There 

are two main angles to get the X-ray images: the cranio-caudal (CC) view and the mediolateral-oblique (MLO) view. The 

goal of mammography is the early detection of breast cancer 41, typically through detection of masses or abnormal regions 

from the formed X-ray images. Usually, such abnormal regions are spotted by doctors or expert radiologists. In this study, 

we used mammogram from the Digital Database for Screening Mammography (DDSM) 28. The DDSM is a widely used 

mammographic images resource by the U.S. Mammographic Image Analysis Research Community. It is a collaborative 

effort between Massachusetts General Hospital, Sandia National Laboratories and the University of South Florida 

Computer Science and Engineering Department. The DDSM database contains approximately 2,620 cases in total: 695 

normal cases, 1925 abnormal cases (914 malignant\cancers cases, 870 benign cases and 141 benign without callback) with 

locations and boundaries of abnormalities. Each case includes four images representing the left and right breasts in CC and 

MLO views. 

We downloaded all mammographic images from DDSM's official website (http://marathon.csee.usf.edu/Mammography 

/Database.html). Since images in DDSM are compressed in LJPEG format, to decompress and convert these images, we 

used the DDSM Utility 42. We converted all images in DDSM to PNG format. DDSM describes the location and boundary 

of actual abnormality by chain-codes, which are recorded in OVERLAY files for each breast image containing 

abnormalities. The DDSM Utility also provides the tool to read boundary data and display them for each image having 

abnormalities. Since the DDSM Utility tools run on MATLAB, we implemented all pre-processing tasks in MATLAB. 

We used the regions of interest of images (ROIs) instead of entire images to train our neural-network models. These ROIs 

are cropped rectangle-shape images and obtained by: 

• For abnormal ROIs from images containing abnormalities, they are the minimum rectangle-shape areas

surrounding the whole given ground truth boundaries.

• For normal ROIs, they are also rectangle-shape images and their sizes are approximately the average size of

abnormal ROIs. In DDSM, the average size of abnormal ROIs is 506.02×503.90 pixels, so the cropping size for

normal ROIs was chosen to be 505×505 pixels. Their locations are selected randomly on normal breast areas. In

this study, we cropped only one ROI from an entire normal breast image.



 

 
 

 

 

 

The sizes of abnormal ROIs vary with abnormality boundaries. Since the neural-network models require all input images 

to be one specific size and the usual inputs for CNN are RGB images (images in DDSM are grayscale), we resized the 

ROIs by resampling and made them to RGB (3-layer cubes) by duplication (Fig. 1). These images cropped from 

mammogram are ORG ROIs. 

 

2.2 GAN Image Augmentation 

The GAN is a neural-network-based generative model that learns the probability distribution of real data and creates 

simulated data samples with a similar distribution (Fig. 2). Formally, in d -dimension space, for dx R , ( )datay p x=  is 

a mapping from x  to real data y . We create a neural network called the generator G  to simulate this mapping. If sample

y comes from 
datap , it is a real one; and sample z comes from G , it is a synthetic one. Another neural network 

discriminator D  is used to detect whether a sample is real or synthetic. Ideally, ( ) ( )1; 0D y D z= = . The two neural 

networks G  and D  compose the GAN. We can find G  and D  by solving the two-player minimax game 12, with value 

function ( ),V G D : 

( ) ( )( ) ( )( )( )min max , log log 1data
G D

V G D D p x D G x  =  + −   
 

This min-max problem has a global optimum (Nash equilibrium) solution for ( ) ( )dataG x p x= . That is the goal to find the 

distribution of real data. At equilibrium, discriminator D  can no longer distinguish the real from the synthetic sample, 

where ( ) ( ) 0.5D y D z= = . Synthetic samples can be generated from G by changing the input x . In this study, the input 

x for G we used was a noise vector having 100 elements from a Gaussian distribution ( )0,1N: . The key point of a well-

trained GAN is that it could generate seemingly real-like data samples by giving noise vectors. To train a GAN, we used 

limited number of real samples. Ideally, GAN could generate unlimited different synthetic samples.  

To implement GAN, we built the generator and discriminator neural networks. The details about their structures show in   

Fig. 1. (A) A mammographic image from DDSM rendered in grayscale; (B) Cropped ROI by the given truth abnormality 

boundary; (C) Convert Grey to RGB image by duplication. 
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Table 1. The generator consists of four up-sampling layers to double the size of image and five convolutional layers. The 

activation function for each layer is the ReLU function 43 except the last one for output, which is tanh function. The function 

of generator is to transform a 100-length vector to a 320x320x3 image. The input of discriminator is a 320x320x3 image 

and its output is a value between 0 and 1, which ‘0’ stands for the synthetic image and ‘1’ for the real one. Like a typical 

CNN, the discriminator has four convolutional layers with max-pooling layers and one FC layer. The activation function 

for each convolutional layer is also the ReLU function and the last one for output is sigmoid function, which maps the 

output value to the range of [0, 1]. 

 

The notation Conv_3-32 means there are 32 convolutional neurons (units) and the filter size in each unit is 3×3-pixel 

(height × width) in this layer. MaxPool_2 means a max-pooling layer with size of filters is 2×2-pixel window, stride 2. 

And FC_n means a fully-connected layer having n units. Dropout layer 44 randomly set a fraction rate of input units to 0 

for the next layer at every updating during training; it could help the networks avoid overfitting. Our training optimizer is 

Nadam 45 using default parameters (except the learning rate changed to 1e-4), the loss function is Binary Cross Entropy, 

the updating metric is Accuracy, the batch size is 30 and the number of total epochs is set to be 1e+5. 

The training methods of GAN are: 

• Step 1: Randomly initialize all weights for both networks. 

• Step 2: Input a batch of 100-length noise vectors to generator to obtain synthetic images. 

• Step 3: To train the discriminator by a batch of synthetic images labeled ‘0’ and real images labeled ‘1’. 

• Step 4: To train the generator: input a batch of 100-length noise vectors to generator to obtain synthetic images 

and label them as ‘1’. Then, input these synthetic images to discriminator to obtain the predicted labels. The 

differences between predicted labels and ‘1’ will be the loss for updating the generator. It is noteworthy that in 

this step, only the weights in generator are changed; weights in discriminator are fixed. 

• Step 5: Repeat Step 2 to Step 4 until all real images have been used once, that counts one epoch. When the number 

of epochs reaches a certain value, training stops. 

Actually, for the Step 5, the ideal situation to stop training is when the classification accuracy of discriminator converges 

to 50%. It means the discriminator no longer can distinguish the real images and synthetic images generated from a well-

trained generator. The discriminator plays a role as an assistant in GAN. After training, we will use the generator neural 

networks to generate synthetic images for usage next. 
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Fig. 2. The principle of GAN. 

 



 

 
 

 

 

 

Table 1. The architecture of generator and discriminator neural networks. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.3 To Train the CNN from Scratch  

Actually, a CNN was designed as the discriminator in GAN and its function is to distinguish real and synthetic 

mammographic ROIs. We also built a CNN to classify abnormal ROIs and normal ROIs. As shown in Table 2, this CNN 

classifier consists of three convolutional layers with max-pooling layers and two FC layers. The activation function for 

each layer is the ReLU function except the last one for output. The output layer uses a sigmoid function, which maps the 

output value to the range of [0, 1]. Its input is the image in size 320×320-pixel. Since the sigmoid function was used in the 

output layer, the predicted outcome from the CNN classifier is a value between 0 and 1. By default, the classification 

threshold is 0.5, meaning that if the value is less than 0.5 it will be considered as “0” (normal), otherwise it will be 

considered as “1” (abnormal). The optimizer for training is Nadam using default parameters 45 (except the learning rate 

changed to 1e-4), the loss function is Binary Cross Entropy, the updating metric is Accuracy, the batch size is 26 and the 

number of total epochs is set to be 750. To train this CNN classifier from scratch, we used the labeled ROIs of abnormal 

and normal mammographic images. 

Table 2. The architecture of CNN classifier. 

CNN classifier 

  Layer Shape 

input: RGB image 320x320x3 

Conv_3-32 + ReLU 320x320x32 

MaxPooling _2 160x160x32 

Conv_3-32 + ReLU 160x160x32 

MaxPooling _2 80x80x32 

Conv_3-64 + ReLU 80x80x64 

MaxPooling _2 40x40x64 

Flatten 102400 

FC_64 + ReLU + Dropout (0.5) 64 

FC_1 1 

output (sigmoid): [0, 1] 1 

 

Generator 

  Layer Shape 

input: 100-length vector 100 

FC_(256x20x20) + ReLU 102400 

Reshape to 20x20x256 20x20x256 

Normalization + Up-sampling 40x40x256 

Conv_3-256 + ReLU 40x40x256 

Normalization + Up-sampling 80x80x256 

Conv_3-128 + ReLU 80x80x128 

Normalization + Up-sampling  160x160x128 

Conv_3-64 + ReLU 160x160x64 

Normalization + Up-sampling  320x320x64 

Conv_3-32+ ReLU 320x320x32 

Normalization + Conv_3-3+ ReLU 320x320x3 

output (tanh): [-1, 1] 320x320x3 

Discriminator 

  Layer Shape 

input: RGB image 320x320x3 

Conv_3-32 + ReLU 320x320x32 

MaxPooling_2 + Dropout (0.25) 160x160x32 

Conv_3-64 + ReLU 160x160x64 

MaxPooling_2 + Dropout (0.25) 80x80x64 

Conv_3-128 + ReLU 80x80x128 

MaxPooling_2 + Dropout (0.25) 40x40x128 

Conv_3-256 + ReLU 40x40x256 

MaxPooling_2 + Dropout (0.25) 20x20x256 

Flatten 102400 

FC_1 1 

output (sigmoid): [0, 1] 1 



 

 
 

 

 

 

2.4 Transfer Learning: Features Extraction by Pre-trained VGG-16 network  

The structure of CNN in transfer learning was combined the 13 convolutional layers in pre-trained VGG-16 model 40 with 
a simple FC layer (Table 3). 

Table 3.  CNN architecture for transfer learning 

CNN classifier with Transfer Learning 

Layer 

input: RGB image          

VGG-16 

Conv block 1 

Conv_3-64 + ReLU 

Conv_3-64 + ReLU 

MaxPool_2 

Conv block 2 

Conv_3-128 + ReLU 

Conv_3-128 + ReLU 

MaxPool_2 

Conv block 3 

Conv_3-256 + ReLU 

Conv_3-256 + ReLU 

Conv_3-256 + ReLU 

MaxPool_2 

Conv block 4 

Conv_3-512 + ReLU 

Conv_3-512 + ReLU 

Conv_3-512 + ReLU 

MaxPool_2 

Conv block 5 

Conv_3-512 + ReLU 

Conv_3-512 + ReLU 

Conv_3-512 + ReLU 

MaxPool_2 

FC_256 + ReLU (with Dropout = 0.5) 

output (sigmoid): [0, 1] 

 

As shown in Table 3, all the weights in five convolutional blocks (the blue background layers) were imported from the 

pre-trained VGG-16 model and not changed (or called weights frozen) during the training of this CNN. Only weights in 

the FC layer were randomly initialized and updated by training. Thus, such training process can be seen as that the VGG-

16 extracts features from input image and then these features were used to train a FC NN-classifier. 

3. EXPERIMENT AND RESULTS 

Our implementation of neural networks was on the Keras API backend on TensorFlow 46.  The development environment 

for Python was Anaconda3.  

3.1 Experiment Plan 

Table 4. Notations for data. 

Set name Notation for element Meaning 

ORG ROIs 
abnorm

O /
norm

O  Real abnormal/normal ROI 

GAN ROIs 
abnorm

G /
norm

G  Synthetic abnormal/normal ROI by GAN 

 



 

 
 

 

 

 

In this study, we collected 1300 original (real) abnormal ROIs (
abnormO , ‘O’ for original) and 1300 original normal ROIs (

normO ) in total. After taking off 10% for validation, there are 1170 
abnormO  and 1170

normO . We firstly did the data 

augmentation to 1170 
abnormO  and 1170

normO by GAN. We used the 1170 
abnormO  and 1170

normO  to train two generators 

respectively: GANabnorm
and GANnorm

for generating GAN ROIs. As shown in Fig. 3 (GAN box), during the training 

process, the generator G  provided synthetic ROIs to discriminator D . D was trained to distinguish the real from the 

synthetic ROIs by real and synthetic ROIs. And once synthetic ROIs were distinguished, D gave feedback loss to G for

G ’s updating. Then G will generate synthetic ROIs more like the real ones. By inputting noise vectors to GANabnorm
and

GANnorm
, we obtained 

abnormG  and 
normG . Fig. 4 shows some synthetic abnormal ROIs (

abnormG ) generated from GANabnorm

. 

 

Table 5. Training plans. 

 

 

 

 

 

 

 

 

 

 

 

We repeated training the CNN classifier and the transfer learning (TL) model from scratch using different datasets of 

labeled ROIs shown in Table 5. During the training, there was no any data augmentation applied. In each set, the number 

of abnormal ROIs and normal ROIs is equal. We used 130 abnormO  and 130 
normO that were never used in the training 

process as validation data to evaluate those CNN classifiers. We generated 1170 abnormG  and 1170 normG  from GAN for 

training Set 2 and combined with 2340 ORG ROIs for Set 3. In the Set 3, the number of ORG ROIs and GAN ROIs are 

equal. In addition, we generated double number of GAN ROIs as ORG ROIs and put them together in Set 4. 

Set# Dataset for training Validation Classifier Model 

1 

1170
abnorm

O  labeled ‘1’ 

1170
norm

O  labeled ‘0’ 

130
abnorm

O  labeled ‘1’ 

130
norm

O  labeled ‘0’ 
CNN in Table 2 TL model in Table 3 

2 

1170
abnorm

G  labeled ‘1’ 

1170
norm

G  labeled ‘0’ 

3 

1170
abnorm

O + 1170
abnorm

G  labeled ‘1’ 

1170
norm

O  + 1170
norm

G  labeled ‘0’ 

4 

1170
abnorm

O + 2340
abnorm

G  labeled ‘1’ 

1170
norm

O  + 2340
norm

G  labeled ‘0’ 

Fig. 3. The flowchart of our experiment plan. CNN classifiers were trained by data including ORG and GAN ROIs. 

Validation data for the classifier were ORG ROIs that were never used for training. The ORG and GAN ROIs were also 

used to Transfer Learning by pre-trained VGG-16 model. 

DDSM 
Crop ROIs 

1300 real abnormal ROIs 

1300 real normal ROIs 

90% for training 10% for validation 

synthetic abnormal ROIs 

synthetic normal ROIs 

CNN classifier 
Training accuracy 

Validation accuracy Generator 

Discriminat

Noise vector x 

GAN 

TL by VGG-16 



 

 
 

 

 

 

 

3.2 Classification Results 

Specifically, to train GAN, we used 1170 
abnormO  to obtain the generator GANabnorm

, and used 1170 
normO  to obtain the 

generator GANnorm
. Fig. 4 shows some synthetic abnormal ROIs (

abnormG ) generated from GANabnorm
. Then, we generated 

abnormG  and 
normG  by generators.  

 

The results of training accuracy and validation accuracy after each training epoch (it is defined in 2.2, training methods, 

Step 5; the total epochs are 750) are shown in Fig. 5. By looking the figures, Set 3 and 4 perform well and Set 1 and 2 are 

worse except Set 1 using transfer learning. To analyze those results quantitatively, we show the stable standard deviation 

(SStd, which is the standard deviation of validation accuracy after 600 epochs), maximum validation accuracy (Best), 

average validation accuracy after 600 epochs (Stable) and whether the over-fitting occurred. The maximum validation 

Fig. 4. (Top row) Real abnormal ROIs; (Bottom row) synthetic abnormal ROIs generated from GAN. 

Real  

Synthetic 

Fig. 5. Training accuracy and validation accuracy for four training datasets. 

SStd:-- 
Best：0.5000 
Stable:0.5000 
Over-fitting:-- 
Time: 16.22s/ep 

SStd: 0.0080 
Best：0.9423 
Stable:0.9148 
Over-fitting:Yes 
Time: 1.46s/ep 

SStd: 0.0081 
Best：0.9385 
Stable: 0.9194 
Over-fitting: No 
Time: 4.23s/ep 

SStd: 0.0063 
Best：0.9885 
Stable: 0.9796 
Over-fitting: No 
Time: 39.78s/ep 

SStd: 0.0109 
Best：0.9346 
Stable:0.9206 
Over-fitting: No 
Time: 2.82s/ep 

SStd: 0.0090 
Best：0.9808 
Stable:0.9682 
Over-fitting: No 
Time: 27.80s/ep 

SStd:-- 
Best：0.5654 
Stable: 0.5084 
Over-fitting:-- 
Time: 1.45s/ep 

SStd: -- 
Best：0.5000 
Stable:0.5000 
Over-fitting:-- 
Time: 12.04s/ep 



 

 
 

 

 

 

accuracy can indicate the best performance of the classifier, but it may be reached fortuitously. The average validation 

accuracy after 600 epochs can show the stable performance of the classifier. For a good classifier, this value will be 

monotone increasing and converged. And SStd shows how validation accuracy varies from its average after 600 epochs. 

The criterion for occurrence of over-fitting is defined by the value: average validation accuracy after 400 epochs minus 

(-) average validation accuracy before 400 epochs; if it is negative, then we consider that the over-fitting occurred because 

of the decreasing of validation accuracy during training. 

Since the maximum validation accuracy may be fortuitous, the stable performance during training is more reliable to 

evaluate a classifier. The results in Fig. 5 demonstrate that: 

• Pure ORG ROIs or GAN ROIs cannot train the CNN classifier successfully. To train CNN from scratch, adding GAN 

ROIs made the CNN classifier training successful. Additionally, by comparing the two results of Set 3 and Set 4, 

more added GAN ROIs improved CNN’s performance. 

• By comparing the two results of Set 1, transfer learning (TL) model successfully improved the accuracy of 

classification a lot. But to compare TL used to Set 1 and Set 2, pure GAN ROIs also cannot train the transfer learning 

model successfully. 

• To transfer learning model, by examining Set 1, 3 and 4, adding GAN ROIs did not improve validation accuracies 

very much, however, prevented the training from over-fitting. 

• By comparing the results of CNN and TL for Set 3 and 4, adding GAN ROIs have more benefit to improved CNN’s 

performance remarkably than to the TL. TL has the advantage on speed – TL was running about 10 times faster than 

CNN. 

Overall, to train TL by only ORG ROIs, the validation accuracy is as good as training by adding GAN ROIs. But adding 

GAN ROIs can help avoid over-fitting. Image augmentation by GAN is necessary to train CNN classifiers from scratch. 

On the other hand, TL is necessary to be applied for training on pure ORG ROIs. To apply GAN to augment training 

images for training CNN classifier obtained the best classification performance. Then, to decrease the time cost of training, 

TL could be also applied to the augmented dataset. 

4. DISCUSSION 

As we discussed in Section 2.2, the ideally theoretical outcome of GAN is ( ) ( )dataG x p x= . If so, the performance of CNN 

classifier trained by GAN ROIs will be as good as by ORG ROIs. Our results, however, show that GAN did not correspond 

with theoretical expectations. Opposite to ORG ROIs, pure GAN ROIs cannot train the transfer learning model successfully 

by comparing TL used to Set 1 and Set 2. The problem could be found by looking the synthetic images (Fig. 4): they have 

clear artificial flavors. One possible reason is that GAN adds some features or information not belonging to real images. 

Those new features disturb classifiers to detect abnormal features in real images. The possible solution is to change the 

architecture of generator or/and discriminator in GAN. In this paper, the architecture we used is DCGAN 47. Recently, 

there are about 500 architectures of GAN 48. We believe that some of them can achieve a better performance to train CNN 

from scratch. 

We reviewed several recent studies highly related to ours. These studies (Table 6) applied transfer learning in CNN to 

detect breast cancer/abnormality based on mammogram. By comparison with these studies, we used many more 

mammographic images for training and testing the CNN classifiers and a distinct pre-trained model. The main difference 

is about the classifier and image augmentation by GAN. Our one-FC layer NN-classifier has simpler architecture and could 

be integrated with pre-trained convolutional layers as one complete CNN. The stable classification accuracies of our 

proposed model for abnormal vs normal cases on mammograms are competitive to other studies. 

Since the GAN were introduced, it has been widely used in many image processing applications 11. In medical imaging, 

many applications of GAN are segmentation 19,21,49–52. And some studies are about medical image simulation/synthesis 53–

57. Image synthesis is a specialty or advantage of GAN, hence, it is apt to apply GAN as an image augmentation method 58 

for training classifiers and improving their detection performances. As far as we aware there is no study about using GAN 

as data augmentation method on mammogram to train CNN classifier or transfer learning model for breast cancer detection. 

Therefore, our study fills this gap. 



 

 
 

 

 

 

Since the DDSM provides truth labels for benign and malignant tumors, in future works, we could also do classification 

for benign and malignant ROIs instead of abnormal and normal ROIs. We could try to recognize the abnormal areas in 

whole mammographic images. By using the RCNN 59, we could recognize the abnormalities on mammographic images 

and draw boundaries (or rectangle region proposals) on such areas automatically. These regions do not have to be very 

high accuracy because they just provide another kind of reference for doctors to make decisions. We could use other pre-

trained models and compare to their performances. In the research field of deep learning, VGG-16 appeared early but its 

depth (total number of layers is 23) is relatively shallow compared to new models, such as InceptionV3 (159 layers) 60, 

ResNet50 (168 layers) 61 and InceptionResNetV2 (572 layers) 62. It will be interesting to see performances of breast cancer 

detection by using very deep CNNs. And we may also examine performances of other architectures of GAN in terms of 

image augmentation. 

Table 6. Comparison of related studies. 

Main method # of images Accuracy % 

Pre-trained CNN on LSVRC datasets & Fine-tuning + Two-step decision37 600 (Ben-Mal) 96.7 

Pre-trained CNN with hand crafted features + RF38 410 (Ben-Mal) 91.0 

Pre-trained AlexNet +Sparse MIL36 410 (Mal-nonMal) 90.0 

Pre-trained VGG-16 + one FC layer by ORG ROIs (Ours) 2600 (Abnorm-Norm) 91.5 

Pre-trained VGG-16 + one FC layer by ORG+GAN ROIs (Ours) 2600 (Abnorm-Norm) 92.1 

CNN by ORG + double GAN ROIs (Ours) 2600 (Abnorm-Norm) 98.0 

 

5. CONCLUSIONS 

In this paper, we proposed GAN to be used as an image augmentation method for training and to improve the performance 

of CNN classifiers. Our results show that, to classify the normal ROIs and abnormal (tumor) ROIs from DDSM, adding 

GAN generated ROIs in training data can help the classifier prevent from over-fitting and the validation accuracy using 

mixture ROIs reached at most (best) 98.85%. Therefore, GAN could be promising image augmentation method. To transfer 

learning in CNN for breast cancer detection, our results show that the pre-trained CNN model (VGG-16) can automatically 

extract features from mammographic images, and a good NN-classifier (achieves stable average validation accuracy about 

91.48% for classifying abnormal vs. normal cases in the DDSM database) can be trained by only real ROIs. In addition, 

we have done the study of combining the two deep-learning-based technologies together. That is to apply GAN for image 

augmentation and then use transfer learning in CNN for detection. Although to train the transfer learning model by adding 

GAN ROIs did not perform better than to train the CNN by adding GAN ROIs, the speed of training transfer learning 

model was about 10 times faster than CNN training. In summary, adding GAN ROIs can help training avoid over-fitting 

and image augmentation by GAN is necessary to train CNN classifiers from scratch. On the other hand, transfer learning 
is necessary to be applied for training on pure ORG ROIs. To apply GAN to augment training images for training CNN 

classifier obtained the best classification performance. 
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