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Abstract—In the U.S., breast cancer is diagnosed in about 
12% of women during their lifetime and it is the second leading 
reason for women’s death. Since early diagnosis could improve 
treatment outcomes and longer survival times for breast cancer 
patients, it is significant to develop breast cancer detection 
techniques. The Convolutional Neural Network (CNN) can 
extract features from images automatically and then perform 
classification. To train the CNN from scratch, however, requires 
a large number of labeled images, which is infeasible for some 
kinds of medical image data such as mammographic tumor 
images. A promising solution is to apply transfer learning in 
CNN. In this paper, we firstly tested three training methods on 
the MIAS database: 1) trained a CNN from scratch, 2) applied 
the pre-trained VGG-16 model to extract features from input 
mammograms and used these features to train a Neural Network 
(NN)-classifier, 3) updated the weights in several final layers of 
the pre-trained VGG-16 model by back-propagation (fine-tuning) 
to detect abnormal regions. We found that method 2) is ideal for 
study because the classification accuracy of fine-tuning model 
was just 0.008 higher than that of feature extraction model but 
time cost of feature extraction model was only about 5% of that 
of the fine-tuning model.  Then, we used method 2) to classify 
regions: benign vs. normal, malignant vs. normal and abnormal 
vs. normal from the DDSM database with 10-fold cross 
validation. The average validation accuracy converged at about 
0.905 for abnormal vs. normal cases, and there was no obvious 
overfitting.  This study shows that applying transfer learning in 
CNN can detect breast cancer from mammograms, and training 
a NN-classifier by feature extraction is a faster method in 
transfer learning. 
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I.  INTRODUCTION  
Breast cancer will be diagnosed among about 1 in 8 (or 

12%) U.S. women during their lifetime [1] and it is the second 
leading reason for women’s death in the U.S. [2]. Early 
mammographic detection based on computer-aided detection 
(CAD) methods can improve treatment outcomes for breast 
cancer and longer survival times for the patients [3]. 
Traditional CAD tools rely on manually extracted features, but 
they have a variety of drawbacks; for example, hand-crafted 
features tend to be domain specific, and the process of feature 
design can be tedious, difficult, and non-generalizable [4]. An 

alternative method for feature extraction is to learn features 
from whole images directly through a Convolutional Neural 
Network (CNN) [5], [6]. The CNN has performed well in 
many image classification tasks [7]. For example, in 2012, the 
AlexNet (a classical CNN model) won the ImageNet Challenge 
[8], which contains color images with 1000 classes. It achieved 
an accuracy of 83.6% for the top-5 error. To train the CNN 
from scratch, however, requires a large number of labeled 
images [9]: AlexNet was trained by using about 1.2 million 
labeled images [8].  Such a requirement often is infeasible for 
some kinds of medical image data such as mammographic 
tumor images because they are difficult to obtain,  true 
positives are scarce in the datasets, and expert labeling is 
expensive [10]. A promising solution is to reuse as the feature 
extractor a pre-trained CNN model that has been trained with 
very large image datasets from other fields, or re-train (fine-
tune) such a model using a limited number of labeled medical 
images [11]. This approach is also called transfer learning, 
which has been successfully applied to various computer vision 
questions [12]–[14]. In fact, some results of transfer learning 
are counterintuitive: previous studies for the pulmonary 
embolism and melanocytic lesion detection [11], [15] show 
that the features (connection weights in the CNN) learned from 
natural images could be transferred to medical images, even if 
the target images greatly differ from the pre-trained source 
images. 

Currently, CNN has been applied to medical image 
classification in three major ways: 1) training CNN from 
scratch [16]–[18]; 2) using pre-trained CNN model to extract 
features from medical images [19]–[21] and 3) fine-tuning pre-
trained CNN model on medical images [22]–[24]. In this study, 
we compared the three main techniques to detect breast cancer 
using the Mammographic Image Analysis Society (MIAS) 
mammogram database [25]. 

Previous studies have applied various machine learning 
methods for breast cancer/tumor detection using mammograms 
[26]. The MIAS and Digital Database for Screening 
Mammography (DDSM) [27] are the most commonly used 
public mammogram databases, and 10-fold cross validation is 
widely used to test trained models. Some studies used the 
traditional automatic feature extraction (not manual extraction) 
techniques, such as Gabor filter, fractional Fourier transform 
and Gray Level Co-Occurrence Matrix (GLCM), to obtain 



features and then applied SVM or other classifier to do 
classification [28]–[32]. Neural networks were also used as 
classifiers [33], [34]. And some studies applied CNN to 
generate features from mammographic images [35]–[38]. Some 
of these studies used pre-trained CNN as applications of 
transfer learning.  Few previous studies, however, presented 
results obtained by using only CNN for both feature generation 
and classification for breast cancer detection in mammograms. 
In our study, we used only one CNN; its front convolutional 
layers are responsible for feature generation and the back fully-
connected (FC) layers are the classifier. Thus, the input for our 
CNN is mammographic images and its output are the 
(predicted) labels.  

In this paper, we used mammographic images from the two 
databases: MIAS and DDSM. Firstly, we tested three training 
methods on MIAS: 1) trained a CNN from scratch, 2) applied 
the pre-trained VGG-16 model [39] to extract features from 
input images and used these features to train a Neural Network 
(NN)-classifier, 3) updated the weights in several last layers of 
VGG-16 model by back-propagation (fine-tuning) to detect 
abnormal regions. By comparison, we found that the method 2) 
is ideal for study. Secondly, we used method 2) to classify 
regions: benign vs. normal, malignant vs. normal and abnormal 
vs. normal from DDSM. We applied 10-fold cross validation to 
evaluate classification results. The validation accuracy curves 
converged, and there was no obvious overfitting.  

Compared with other studies in this field, this study used a 
different pre-trained model, a simpler classification architecture 
and classifier, and used many more images for training. The 
results are competitive with prior works: our average accuracy 
is about 0.905 for abnormal vs. normal classifications and the 
AUC = 0.96. Our best model could reach 0.950 accuracy for 
abnormal vs. normal case. 

II. MATERIALS

A. Mammograohy Databases
Mammography is the process of using low-energy X-rays

to examine the human breast for diagnosis and screening. 
There are two main angles to get the X-ray images: the cranio-
caudal (CC) view and the mediolateral-oblique (MLO) view 
(Fig. 1). The goal of mammography is the early detection of 
breast cancer [40], typically through detection of masses or 
abnormal regions from the formed X-ray images. Usually, such 
abnormal regions are spotted by doctors or expert radiologists. 

In this study, we used mammographic images from the two 
databases: Mammographic Image Analysis Society (MIAS) 

[25] and Digital Database for Screening Mammography
(DDSM) [27]. The MIAS is an organization of UK research
groups interested in the understanding of mammograms and
has generated a database of digital mammograms. The MIAS
database has 322 images including 102 abnormal and 220
normal samples. The locations and boundaries of these
abnormal regions are given. The DDSM is another widely used
resource by the U.S. mammographic image analysis research
community. It is a collaborative effort between Massachusetts
General Hospital, Sandia National Laboratories and the
University of South Florida Computer Science and Engineering
Department. The DDSM database contains approximately
2,620 cases in total: 695 normal cases, 1925 abnormal cases
(914 malignant\cancers cases, 870 benign cases and 141 benign
without callback) with locations and boundaries of
abnormalities. Each case includes four images representing the
left and right breasts in CC and MLO views.

B. Pre-trained model: VGG-16
For transfer learning, we applied the pre-trained VGG-16

model [39] in this study. The VGG-16 network was proposed 
by the Oxford Visual Geometry Group for the ImageNet 
Large-Scale Visual Recognition Challenge (ILSVRC) 
competition. This model is also known as one of typical deep 
convolutional networks. It was deeper and wider than the 
previous neural architectures. It mainly consists of five groups 
of convolution operations. Adjacent convolution groups are 
connected through max-pooling layers. Each group contains a 
series of 3×3-pixel convolutional layers. The VGG-16 model 
has 16 hidden layers in total, composed of 13 convolutional 
layers and 3 FC layers. 

This pre-trained VGG-16 network was trained with about 
1.3 million images (1000 classes) from ImageNet database [41] 
(ILSVRC-2012 competition), and it surpassed human-level 
performance on ImageNet [42], which achieved 7.5% top-5 
error on ILSVRC-2012-Val and 7.4% top-5 error on ILSVRC-
2012-Test in the competition.  

III. METHODS

In this study, we firstly downloaded mammographic images 
in MIAS and DDSM databases and cropped the Region of 
Interest (ROI) by given abnormal areas as ground truth 
information. We proposed three training methods including 
non-transfer learning and transfer learning in CNN. 

A. Images Pre-processing
We downloaded all mammographic images in MIAS and

DDSM databases from their official website. The images in 
MIAS are in PGM format, which can be read and processed by 
MATLAB directly. But images in DDSM are compressed in 
LJPEG format. To decompress and convert these images, we 
used the DDSM Utility [43]. We converted all images in 
DDSM to PNG format. MIAS describes abnormal regions by 
circular boundaries, and their center locations (X, Y) and radii 
values are contained in the documentation. DDSM describes 
the location and boundary of actual abnormality by chain-
codes, which are recorded in OVERLAY files for each breast 
image containing abnormalities. The DDSM Utility also 

CC view MLO view 

Fig. 1. Mammography in CC and MLO view 



 

provides the tool to read boundary information and display 
them for each image having abnormalities. Since the DDSM 
Utility tools run on MATLAB, we implemented all pre-
processing tasks in MATLAB. 

 We used the ROIs instead of whole images to train neural 
networks. These ROIs are cropped rectangle-shape images and 
obtained by: 

• For abnormal ROIs from images containing 
abnormalities, they are the minimum rectangle-shape 
areas surrounding the whole given ground truth 
boundaries. 

• We firstly obtained abnormal ROIs. So, for normal 
ROIs, they are also rectangle-shape images and their 
size are about the average size of abnormal ROIs in 
the same database. For example, in DDSM, the 
average size of abnormal ROIs is 506.02×503.90 
pixels, the decided cropping size for normal ROIs is 
505×505 pixels. Their locations are randomly selected 
on normal breast areas. In this study, we cropped only 
one ROI from a whole normal breast image. 

 The sizes of abnormal ROIs vary with abnormality 
boundaries. Since the CNN requires all input images to be one 
specific size and usual inputs for CNN are RGB images 
(images in MIAS and DDSM are Grey images and the input of 
VGG-16 model requires RGB images), we resized the ROIs by 
resampling and made them to RGB (3-layer cubes) by 
duplication (Fig. 2). 

 

B. To Train the Convolutional Neural Network (CNN) from 
Scratch (New-model) 

 We built our own CNN in this part. The details about this 
CNN structure show in the TABLE  I. It consists of three 
convolutional layers with max-pooling layers and one FC 
layer. The activation function for each layer is the ReLU 
function [44] except the last one for output, which is sigmoid 
function.  

 The notation Conv_3-32 means there are 32 convolutional 
neurons (units) and the filter size in each unit is 3×3-pixel 
(height×width) in this layer. MaxPool_2 means a max-pooling 

layer with size of filters is 2×2-pixel window, stride 2. And 
FC_64 means a fully-connected layer having 64 units. Dropout 
layer [45] randomly set a fraction rate of input units to 0 for the 
next layer at every updating during training; it could help the 
CNN avoid overfitting. The output layer uses a sigmoid 
function, which maps the output value to the range of [0, 1]. 

TABLE  I. CNN ARCHITECTURE FOR TRAINING FROM SCRATCH 
input: RGB image 

Conv_3-32 + ReLU 

MaxPool_2 

Conv_3-32 + ReLU 

MaxPool_2 

Conv_3-64 + ReLU 

MaxPool_2 

FC_64 + ReLU (with Dropout = 0.5) 

output (sigmoid): [0, 1] 

 

C. Transfer Learning: Features Extraction by Pre-trained 
VGG-16 network (Feature-model) 
The structure of CNN in transfer learning was combined 

the 13 convolutional layers in pre-trained VGG-16 model [39] 
with a simple FC layer (TABLE  II). 

TABLE  II. CNN ARCHITECTURE FOR TRANSFER LEARNING 
input: RGB image 

VGG-16 

Conv block 1 

Conv_3-64 + ReLU 

Conv_3-64 + ReLU 

MaxPool_2 

Conv block 2 

Conv_3-128 + ReLU 

Conv_3-128 + ReLU 

MaxPool_2 

Conv block 3 

Conv_3-256 + ReLU 

Conv_3-256 + ReLU 

Conv_3-256 + ReLU 

MaxPool_2 

Conv block 4 

Conv_3-512 + ReLU 

Conv_3-512 + ReLU 

Conv_3-512 + ReLU 

MaxPool_2 

Conv block 5 

Conv_3-512 + ReLU 

Conv_3-512 + ReLU 

Conv_3-512 + ReLU 

MaxPool_2 

FC_256 + ReLU (with Dropout = 0.5) 

output (sigmoid): [0, 1] 

Fig. 2. (A) A mammographic image from MIAS in pseudo color (Parula 
[MATLAB]); (B) Cropped ROI by the given truth abnormality boundary; (C) 
Convert Grey to RGB image by duplication. 
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 As shown in TABLE  II, all the weights in 5 convolutional 
blocks (the blue background layers) were imported from the 
pre-trained VGG-16 model and not changed (or called weights 
frozen) during the training of this CNN. Only weights in the 
FC layer were randomly initialized and updated by training. 
Thus, such training process can be seen as that the VGG-16 
extracts features from input image and then these features were 
used to train a FC NN-classifier. 

D. Transfer Learning: Fine-tuning (Tuning-model) 
The CNN structure for fine-tuning is the same structure as 

shown in TABLE  II. One difference is in the training process – 
not all weights in the pre-trained model are fixed. During the 
fine-tuning training, the weights in the first 4 convolutional 
blocks (the darker blue background layers) were imported from 
the pre-trained VGG-16 model and frozen. The weights in the 
last convolutional blocks (Conv block 5), however, were 
updated by training.  Another difference is that weights in the 
FC layer were imported from previous feature extraction 
training instead of random initialization. Weights in the last 
convolutional blocks were also imported from the pre-trained 
VGG-16 model. Therefore, no weight was randomly initialized 
in fine-tuning. 

IV. RESULTS AND EVAULUATIONS 
Our implementation of CNN was on the Keras API 

backend on TensorFlow [46].  The development environment 
for Python was Anaconda3.  

A. Results for MIAS 
We firstly tested the three CNN classification models – 

New-model, Feature-model and Tuning-model – on MIAS 
dataset. We randomly selected 95 ROI (cropped) images for 
each abnormal and normal case, and divided them into training 
and validation set by ratio 15:4. The label is binary, which “0” 
stands for normal and “1” for abnormal. Our training method 
(optimizer) was RMSprop [47] using default parameters 
provided in Keras, loss function was Binary Cross Entropy, 
updating metrics was Accuracy, batch size was 15 and the 
number of total epochs was set to be 500. For a CNN classifier, 
the input is the ROI image in size 421×421-pixel. Since the 
sigmoid function was used in the output layer, the predicted 
outcome from the CNN classifier is a value between 0 and 1. 
By default, the classification threshold is 0.5, meaning that if 
the value is less than 0.5 it will be considered as “0” (normal), 
otherwise it will be considered as “1” (abnormal). 

1) New-model (non-transfer learning):  

The result in Fig. 3 shows classification accuracy of the 
New-model for validation set. The blue curve is the accuracy 
after each epoch of training, and it was smoothed (the 
smoothing interval is about 20 epochs) to yield the red curve 
because we want to see its tendency as the number of epochs 
increased. One epoch means the model has been trained by all 
training data once. This result shows that the average accuracy 

is low (Max = 0.751) and the accuracy curve (blue) has not 
converged. 

 
 

2) Feature-model:  

The result in Fig. 4 shows the average accuracy of the 
Feature-model converged at about 0.906 (also Max = 0.906) 
and the accuracy curve converged. The time cost for each 
epoch is about 14% of that of the New-model. Therefore, such 
comparison demonstrates that the performance of CNN in 
transfer learning is much better than training from scratch for 
breast cancer/tumor detection. 

 
 

3) Tuning-model:  

 
 

The result in Fig. 5 shows the average accuracy of the 
Tuning-model can reach a maximum of 0.914 and the accuracy 
curve also converged. Its performance is slightly improved 

Fig. 5. Result of the Tuning-model 

Fig. 4. Result of the Feature-model 

Fig. 3. Result of the New-model 



 

(about 0.88%) compared to the Feature-model. But the training 
time for each epoch is about 22 times that of training the 
classifier by only feature extraction. 

 
Fig. 6 shows classification accuracy of the three models – 

New-model (yellow), Feature-model (red) and Tuning-model 
(blue) – on the MIAS validation set. The center line is 
smoothed accuracy (the smoothing interval is about 20 epochs) 
and width shows the departure of the mean. By comparison, 
training classifier by extracted features is the ideal method for 
study because its accuracy is very close to that of fine-tuning 
and the time cost is only about 5% of that of fine-tuning. But 
for real applications, fine-tuning is also feasible because we 
can have enough time (off-line) to train a very good model for 
implementation.  

B. Results for DDSM 
Second, we tested the performance of the Feature-model on 

the DDSM dataset. We used the same pre-processing as with 
MIAS to crop the DDSM images to create ROIs. Since the 
DDSM dataset has three main categories (normal, benign and 
malignant\cancer), we designed three classification 
experiments. The number of ROIs used for each experiment 
shows in TABLE  III. All ROIs were randomly selected and 
shuffled in class sets. The label is binary, which “0” stands for 
Class 2 (normal) and “1” for Class 1(abnormal). 

TABLE  III. EXPERIMENTS FOR FEATURE-MODEL ON DDSM 
Experiment Class 1  # of ROIs Class 2 # of ROIs 

Exp.1 benign 800 normal 800 

Exp.2 malignant 800 normal 800 

Exp.3 abnormala 1300 normal 1300 
a. The abnormal class contains 650 benign and 650 malignant ROIs. 

The training method used the Feature-model, and 
evaluation was 10-fold cross validation. Our training method 
(optimizer) was Nadam [48] using default parameters (except 
the learning rate changed to 1e-4) provided in Keras, the loss 
function was Binary Cross Entropy, the updating metric was 
Accuracy, the batch size was 20 and the number of total epochs 
was set to be 500. For a CNN classifier, the input is the ROI 
image (of size 300×300-pixels) and the predicted outcome is a 
value between 0 and 1. By default, the discriminant threshold is 
0.5. To compute the Receiver Operating Characteristic (ROC) 
curve, such threshold could be changed between 0 and 1. 

 

 
 Fig. 7 shows the result of Exp. 3. The red curve is training 
accuracy and blue is validation accuracy. The center line is 
average through 10-cross validation accuracy, and width shows 
the range of fluctuation in 10-cross validation. After 100 
epochs, the validation accuracy converged at about 0.905, and 
there was no obvious overfitting. This classification accuracy 
matches the result on the MIAS database, which is about 0.906.  

 During the training in Exp. 3, the best (maximum) 
validation accuracy that the classification model reached was 
0.950. Fig. 8 shows the ROC curve and AUC (area under 
curve) value for that model. Besides the average performance, 
the best situation is also important because during the CNN 
training, for each epoch, the validation accuracy may be 
changed but we could keep the best model for using. 

 

 
  

TABLE  IV. CLASSIFICATION RESULTS FOR FEATURE-MODEL ON DDSM 

Experiment Val_Acc  Tr_Acc Best Val_Acc model 
Val_Acc AUC 

Exp.1 0.909±0.044 0.983 0.975 0.993 

Exp.2 0.912±0.035 0.988 0.956 0.980 

Exp.3 0.905±0.032 0.976 0.950 0.971 

 

Fig. 8. The ROC curve of the best model (Acc=0.950) in Exp.3 

Fig. 7. Exp.3 result 

Fig. 6. Comparing of the three CNN classification models 



 

 Since Exp. 3 has more ROIs and its abnormal set includes 
half benign and half malignant ROIs, it is more representative 
than Exp. 1 and Exp. 2. TABLE  IV shows results for the three 
experiments, where Val_Acc is the accuracy for validation set 
and Tr_Acc is accuracy for training set. 

 It is reasonable that Exp. 2 has the highest average 
validation accuracy of classification because a malignant mass 
could have more differences from normal tissue than a benign 
mass.  

V. DISCUSSION 

A. Comparsion of Related Studies 
 We reviewed several recent studies highly related to ours. 
These studies (TABLE  V) applied transfer learning in CNN to 
detect breast cancer/abnormality based on mammogram.  

 By comparison with these studies, we used many more 
mammographic images for training and testing the CNN 
classifiers and a distinct pre-trained model. The main 
difference is about the classifier. Our one-FC layer NN-
classifier has simpler architecture and could be integrated with 
pre-trained convolutional layers as one complete CNN. The 
average classification accuracy of our CNN (about 90.5%) for 
abnormal vs normal cases on mammograms and the AUC 
(about 0.96) are competitive to others’. And our best model 
could reach ACC = 95% for abnormal vs normal cases. 

TABLE  V. COMPARISON OF RELATED STUDIES 

Main method Validation  
(# of images) Accuracy % AUC 

Pre-trained CNN on 
LSVRC datasets & Fine-

tuning + Two-step 
decision[36] 

2-fold cross 
(600) 

(Ben-Mal) 
96.7 – 

Pre-trained CNN with 
hand crafted features + 

RF[37] 

5-fold cross 
(410) 

(Ben-Mal) 
91 ± 0.02 0.76 

Pre-trained AlexNet  
+Sparse MIL[35] 

5-fold cross 
(410) 

(Mal-nonMal) 
90.00 ± 0.02 0.85 

Pre-trained VGG-16  
+ one FC layer(Ours) 

10-fold cross 
(2600) 

(Abnorm-Norm) 
90.5 ± 3.2 0.96 

 

B. Problems and Future Works 
 There are two problems we found during this study: 1) the 
classification accuracy was much lower for benign (800) vs. 
malignant (800) ROIs, even for the best model (Max = 0.725). 
But we consider that the importance of benign vs. malignant is 
less than abnormal vs. normal because it is not the advantage or 
main purpose of mammography detection. 2) The classification 
accuracy by using mammogram of CC view is better than 
MLO view. We tested the Feature-model on benign (800) vs. 
normal (800) cases of CC view and MLO view. For the best 
classification accuracy, using CC view was 0.931 and using 
MLO view was 0.887. Their difference is small, but we did not 
find the reason or explanation yet. 

 For our future studies, we could try to recognize the 
abnormal areas in whole mammographic images. As the object 
detection with region proposal [49], by using the CNN, we 
could recognize the abnormalities on mammographic images 

and draw boundaries (or rectangle region proposals) on such 
areas automatically. These regions do not have to be 100% 
accuracy; they just provide another kind of reference for 
doctors to make decisions.  

 We could use other pre-trained models, and compare to 
their performances. In the research field of deep learning, 
VGG-16 appeared early but its depth (total number of layers is 
23) is relatively shallow compared to new models, such as 
InceptionV3 (159 layers) [50], ResNet50 (168 layers) [51] and 
InceptionResNetV2 (572 layers) [52]. It will be interesting to 
see performances of breast cancer detection by using very deep 
CNNs. 

VI. CONCLUSION 
In this paper, we applied three CNN methods to detect 

breast cancer from mammograms. Training CNN from scratch 
is not feasible for limited number of labeled mammographic 
images. Using transfer learning in CNN is a promising solution 
for breast cancer detection. Our results show that the pre-
trained CNN model (VGG-16) can automatically extract 
features from mammographic images, and a good NN-classifier 
can be trained by these features without providing hand-crafted 
features. Combining pre-trained CNN (VGG-16) with a one-
FC NN-classifier can achieve average accuracy about 0.905 for 
classifying abnormal vs. normal cases in the DDSM database. 
In this study, the classification accuracy of the fine-tuning 
model is just 0.008 higher than that of the feature-extraction 
model but the time cost of the feature-extraction model is only 
about 5% of that of fine-tuning model. Therefore, this study 
shows that applying transfer learning in CNN can detect breast 
cancer from mammogram, and training a NN-classifier by 
feature extraction is a faster method in transfer learning.  
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